The objective of this research is to determine if electrical stimulation can improve the strength and coordination of the lower limb muscles, and the walking ability of stroke survivors. The knowledge gained from this study may lead to enhancements in the quality of life of stroke survivors by improving their neurological recovery and mobility. The results may lead to substantial changes in the standard of care for the treatment of lower limb hemiparesis after stroke.
Hemiplegia is a major consequence of stroke and contributes significantly to the physical disability of stroke survivors. Foot-drop, or inability to dorsiflex the paretic ankle during the swing phase of gait, and ankle instability during stance phase, are important gait abnormalities that contribute to reduced mobility among stroke survivors. In the United States, the standard of care in addressing these deficits is the custom molded ankle-foot-orthosis (AFO). However, evolving data now demonstrate that active repetitive movement training is the principal substrate for facilitating motor relearning after stroke. Motor relearning is defined as the reacquisition of motor ability after central nervous system injury. Thus, while an AFO may assist stroke survivors to ambulate in the short-term, it is possible that it also inhibits recovery in the long-term. Previous studies have demonstrated that active repetitive movement exercises mediated by neuromuscular electrical stimulation (NMES) facilitate motor relearning among stroke survivors. In particular, studies have reported that some chronic stroke survivors treated with a peroneal nerve stimulator for foot-drop experience sufficient recovery that they no longer need the peroneal nerve stimulator or an AFO for community ambulation. However, there are no blinded randomized clinical trials that rigorously evaluate the motor relearning effects of ambulation training with peroneal nerve stimulators. Thus, the primary aim of this project is to assess the effects of transcutaneous peroneal nerve stimulation on lower limb motor relearning among chronic stroke survivors. The secondary aim is to assess the effects of transcutaneous peroneal nerve stimulation on lower limb mobility (disability) and overall quality of life. A single-blinded randomized clinical trial will be carried out to assess the effects of ambulation training with a peroneal nerve stimulator among chronic stroke survivors compared to ambulation training with conventional standard of care (which may include an AFO). Subjects will be treated for 12 weeks and followed for a total of another 6 months. This project will determine the effectiveness of peroneal nerve stimulation in facilitating motor relearning and improving the mobility and quality of life of stroke survivors. This proposed approach is expected to improve patient outcome and challenge the present clinical paradigm of prescribing AFOs for stroke survivors with foot-drop.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
SINGLE
Enrollment
110
Device implementation \& use for \~13 weeks (until 2nd Outcomes Assessment (1st post-treatment Outcomes Assessment)). The ODFS then will be returned to the investigators.
Conventional standard of care (which may include implementation \& use of a study-specific Custom Molded Hinged Ankle Foot Orthosis (AFO)) for \~13 weeks (until 2nd Outcomes Assessment (1st post-treatment Outcomes Assessment)). The AFO, if implemented, may continue to be used afterwards since it is an element of the standard of care for this patient population.
Traditional physical therapy treatment for 12 weeks.
MetroHealth Medical Center
Cleveland, Ohio, United States
Fugl-Meyer Motor Assessment (FMA)
Lower limb motor impairment as measured by the lower limb portion of the Fugl-Meyer Assessment (FMA) which consists of 17 items, with a maximum possible score of 34 points, with lower scores indicating higher impairment. Each item was answered using a 3-point ordinal scale (0 = cannot perform, 1 = can partially perform, 2 = can fully perform).
Time frame: Weeks 0, 12, 24, 36
Steps Per Minute
The number of steps taken by participants in one minute
Time frame: Weeks 0, 12, 24, 36
Modified Emory Functional Ambulation Profile(mEFAP)
The mEFAP comprises 5 individually timed tasks performed over different environmental terrains. The subtasks include (1) a 5-meter walk on a hard floor; (2) a 5-meter walk on a carpeted surface; (3) rising from a chair, a 3-meter walk, and return to a seated position (the "timed up-and-go" test); (4) traversing a standardized obstacle course; and (5) ascending and descending 5 stairs. The mEFAP is performed with or without the use of an orthotic device or an AD. Manual assistance (MA) is provided as necessary. The subject can use rails when climbing the stairs. The 5 timed subscores are added to derive a total score in seconds.
Time frame: Weeks 0, 12, 24, 36
Stroke-Specific Quality of Life Scale (SS-QOL)
The Stroke Specific Quality Of Life scale (SS-QOL) is a patient-centered outcome measure intended to provide an assessment of health-related quality of life specific to patients with stroke. Patients must respond to each question of the SS-QOL with reference to the past week. It is a self-report scale containing 49 items in 12 domains: Mobility, Energy, Upper extremity function, Work/productivity, Mood, Self-care, Social roles, Family roles, Vision, Language, Thinking, Personality. There are 11 subscales. Items are rated on a 5-point Likert scale with higher scores indicate better functioning. The overall SS-QOL summary score (summation of all items) is presented here. Scores range from 49-245.
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.
Time frame: Weeks 0, 12, 24, 36
Gait Speed
Time frame: baseline, 12, 24 and 36 weeks