The Kensey Nash Corp. Cartilage Repair Device is a bioresorbable scaffold designed to promote repair of knee cartilage and subchondral bone. Subjects with knee cartilage damage meeting eligibility criteria will be randomly assigned to receive treatment with the Cartilage Repair Device or a standard surgical technique called microfracture. The purpose of the study is to evaluate the initial safety and effectiveness of the Cartilage Repair Device compared to microfracture.
Damage to articular cartilage in the knee by acute or chronic injury causes pain and limits knee function. If left untreated, damage to the articular cartilage can lead to painful osteoarthritis. The human body has a limited ability to regenerate or adequately repair damage to articular cartilage. There are several surgical techniques available to assist the repair of articular cartilage and improve pain and function. Microfracture is the most commonly used technique for cartilage repair. Microfracture involves the creation of numerous small fractures in the bone with a pick. These small fractures cause the release of multipotential stem cells from the bone marrow creating a clot on the surface. Over time, this clot causes reparative fibrocartilage to form. However, fibrocartilage is less durable and lacks the mechanical properties of normal articular cartilage. The majority of patients treated with microfracture has good results within the first 2 years after microfracture. However, beyond 2 years, functional deterioration is seen in over 50% of patients. Therefore, there is a clinical need for a product that improves surgical outcomes in patients with cartilage damage. The Kensey Nash Corp. Cartilage Repair Device is a two layer, bioresorbable implant. The top layer consists of collagen fibers like those found in normal cartilage. The collagen layer is about as thick as the cartilage in human knees. The bottom layer of the Cartilage Repair Device mainly consists of a calcium mineral naturally found in human bones. The mineral is held within a biodegradable polymer material. The device has a highly porous structure that allows the blood, stem cells and joint fluid to infiltrate the device during the healing process. Over time, the top layer is designed to be replaced by cartilage and the bottom layer is designed to be replaced by bone. Both microfracture and the Cartilage Repair Device are expected to reduce knee pain and increase knee function in a majority of patients during the first 2 years post-operative. However, if the Cartilage Repair Device produces better and more durable cartilage than the microfracture technique, those patients treated with the Cartilage Repair Device may have a better long term outcome.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
SINGLE
Enrollment
2
To perform the Cartilage Repair Device implantation procedure, the surgeon first removes the damaged cartilage. Then, the surgeon creates a cylindrical hole in the bone below the area of damaged cartilage. The Cartilage Repair Device is then implanted into the hole so that the surface is level with the surrounding native cartilage. The Cartilage Repair Device will then absorb blood and bone marrow from the bone to begin the healing process.
To perform the microfracture technique, the surgeon will first remove the damaged cartilage. Then, the surgeon will make a number of small fractures in the bone below the area of damaged cartilage. The fractures cause the bone to bleed and a clot to form over the exposed bone. Over time, the clot forms a layer of fibrocartilage over the bone.
Peninsula Orthopedic Associates
Salisbury, Maryland, United States
U.S. Center for Sports Medicine
Kirkwood, Missouri, United States
Patient Success
Improvement in pain, function, and cartilage defect appearance without any treatment related serious adverse events.
Time frame: 24 months
Knee Injury and Osteoarthritic Outcome Score ("KOOS")
Clinically significant improvement in the KOOS Pain, Activities of Daily Living, Symptoms, Sports \& Recreation and Quality of Life subscale scores
Time frame: 24 months
Cartilage defect appearance on MRI
Cartilage defect filling, repair cartilage integration with surrounding native cartilage and presence of bony overgrowth will be assessed.
Time frame: 24 months
Lyshom Score
Clinical significant improvement in the Lysolm Knee Scale score
Time frame: 24 months
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.