Peripheral pulse oximetry allows continuous non-invasive measurement of arterial oxygen saturation, but the gold standard for arterial oxygen saturation is co-oximeter which requires an arterial blood sample. The purpose of this research study is to determine the accuracy of a pulse oximeter with a standard sensor (Masimo LNCS sensor) versus with the study sensors, namely Masimo blue sensor and Nellcor Max-I sensors and compared against co-oximetry. Currently available peripheral oximeters (standard) are inaccurate at low oxygen saturation noted in children with cyanotic heart disease. Hence therapeutic interventions (including surgery and cardiac catheterizations) based solely on peripheral oximetry can be delayed and or inadequate. By doing this study the investigators will be able to establish correct limits of peripheral pulse oximeter when using the standard and the study sensors.
Peripheral pulse oximetry allows continuous non-invasive measurement of arterial oxygen saturation, but the gold standard for arterial oxygen saturation is co-oximeter which requires an arterial blood sample. The purpose of this research study is to determine the accuracy of a pulse oximeter with a standard sensor (Masimo LNCS sensor) versus with the study sensors, namely Masimo blue sensor and Nellcor Max-I sensors and compared against co-oximetry. Currently available peripheral oximeters (standard) are inaccurate at low oxygen saturation noted in children with cyanotic heart disease. Hence therapeutic interventions (including surgery and cardiac catheterizations) based solely on peripheral oximetry can be delayed and or inadequate. By doing this study we will be able to establish correct limits of peripheral pulse oximeter when using the standard and the study sensors. The investigator hopes to learn the limits of accuracy of currently available and used pulse oximeters. In children with cyanotic heart disease the "blue sensor" has been found in small studies to be more accurate compared to the "standard" pulse oximeter. This study is important as it will provide information as to which pulse oximeter should be routinely used in children with cyanotic heart disease and to assess which SPO2 even with blue sensor is borderline and therefore the physician will know to obtain arterial blood sample for co-oximeter prior to planning important procedures based on a saturation reading.
Study Type
OBSERVATIONAL
Enrollment
53
Stanford University Medical Center
Stanford, California, United States
Accuracy of Peripheral Pulse Oximetry versus Arterial Co-oximeter in Children with Cyanotic Heart Disease
The primary outcome measure is to describe the bias and precision between the Masimo blue sensor and co-oximetry.
Time frame: 2 year
establish correct limits of peripheral pulse oximeter when using the standard and the study sensors.
The secondary measure was to describe the limits of the blue sensor and standard sensor accuracy as compared with the co-oximeter. If the test sensors consistently have a bias greater than 2 SD from the co-oximeter value at saturations lower than eg., 80 then the recommendation would be that the co-oximetry be used to measure patients saturatioin rather than relying on pulse oximtery alone for clinical decision making
Time frame: 2year
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.