The immune system is composed of diverse cell types with different functions that act together in order to defend against infection. This pilot study will test a new technology for studying these many different cell types at very large numbers at the level of individual cells. This method will then be used to identify the cell types and functions important for the immune response to the highly protective yellow fever vaccine, which will improve our understanding of effective vaccine features.
Vaccines have had monumental impact in reducing the mortality and morbidity of infectious disease. However, the underlying immune mechanisms that contribute to their effectiveness are incompletely understood. Transcriptomics (methods that measure the activity of thousands of genes) studies have identified key features of responses to vaccination(see references) and infection(see references). However, these experiments are typically performed on heterogeneous cell mixtures such as peripheral blood mononuclear cells (PBMC which include certain types of white blood cells) and therefore provide an aggregate measure of gene expression from the many different immune cells and their respective activities in the mixture. Such results can obscure important biological information, particularly in minor subsets of active cells. Establishing a method for immune transcriptomics at single cell resolution would be a highly significant advance and enable more informative and functionally relevant systems immunology studies with commonly used sample types (i.e. PBMC). Applying this high-resolution approach to Yellow Fever Vaccine (YFV), an exceptionally effective vaccine, is likely to identify unappreciated mechanisms that contribute to protective immunity.
Study Type
OBSERVATIONAL
Enrollment
6
Yellow Fever Vaccine .5 ml
The Rockefeller University
New York, New York, United States
Feasibility and accuracy of inDrop RNA-Seq
The feasibility and accuracy of inDrop RNA-Seq for distinguishing different cell types will be assessed by comparing (for concordance) cell subset population frequency and distribution values determined by inDrop RNA-seq to cell subset population frequency and distribution values determined by flow cytometry immunophenotyping, the present "gold standard" technique.
Time frame: up to 42 days post baseline visit
Utility of inDrop RNA-Seq
The utility of inDrop RNA-Seq for characterizing an immune response will be determined by measuring cell subset frequencies and gene expression profiles at single cell resolution over time following YFV.
Time frame: Days 0, 3, 7, 14, 42
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.