Cigarette smoking constitutes the greatest preventable cause of mortality and morbidity in the US. The most critical period for long term success of smoking cessation appears to be in the first 7 days after the quit date. A metaanalysis of 3 pharmacotherapy trials revealed that abstinence during the first 7 days was the strongest predictor of 6 month outcomes (n=1649; Odds ratio: 1.4, P \<0.0001; Ashare et al. 2013). Prodigious relapse rates during this first week of smoking cessation are likely due to behavioral and neurobiological factors that contribute to high cue-associated craving and low executive control over smoking. The long term goal of the research is to develop evidence-based transcranial magnetic stimulation protocols to facilitate abstinence during this critical period.
The competing neurobehavioral decision systems (CNDS) theory posits that in addiction, choice results from a regulatory imbalance between two decision systems (impulsive and executive). These behavioral systems are functionally linked to two discrete frontal-striatal circuits which regulate limbic and executive control. Modulating these competing neural circuits (e.g. either dampening the limbic/impulsive system or amplifying the executive control system), may render smokers less vulnerable to factors associated with relapse. The scientific premise for the proposed research is that direct modulation of these neural circuits will induce changes in cigarette valuation and brain reactivity to smoking cues. However, the relative efficacy of targeting one or the other systems is unknown. To address this gap the investigators will target the two components derived from the CNDS. These two frontal-striatal neural circuits - the limbic loop (ventromedial prefrontal cortex (vmPFC)-ventral striatum), and executive control loop (dorsolateral PFC (dlPFC)-dorsal striatum) can be differentially stimulated by theta burst stimulation (TBS), a patterned form of transcranial magnetic stimulation (TMS). Continuous TBS (cTBS) results in long term depression (LTD) of cortical excitability and intermittent TBS (iTBS) results in potentiation (LTP). Recent studies by our group have demonstrated that LTD-like cTBS to the vmPFC (Aim 1) attenuates brain activity in the nucleus accumbens (Hanlon et al. 2015) and salience network (2017). In a collaborative MUSC/VTCRI study, 5 days of vmPFC cTBS reduced the value of cigarettes, preference for immediate gratification, and smoking cue-evoked brain activity. Alternatively, other investigators have demonstrated that LTP-like stimulation to the dlPFC (Aim 2) decreases cigarette craving and cigarette use. These studies support the targets specified by CNDS. The investigators will evaluate the relative efficacy of these 2 strategies as novel tools to change smoking-related behaviors and dampen brain reactivity to cues in two double-blind, sham-controlled neuroimaging studies. The investigators long-term vision is that TBS would be used as an acute intervention enabling individuals to get through the first week after a smoking quit attempt without relapsing, and transition to more sustainable mechanisms of behavioral change (e.g., medication, cognitive behavioral therapy). Aim 1 (Strategy 1): Modulating the limbic system as an approach to treatment: vmPFC cTBS. Cigarette smokers will be randomized to receive 10 days of real cTBS or sham cTBS directed to the vmPFC. Intermittently the desire to smoke, cigarette value using behavioral economic demand, preference for immediate gratification (delay discounting), and cigarette self-administration will be assessed. Smoking cue-evoked brain activity will also be measured when individuals are asked to 'crave' (passive limbic engagement) versus 'resist' the craving (executive engagement). The investigators hypothesize that cTBS will: 1) decrease the behavioral smoking measures described above, which will be explained by a selective 2) decrease in the neural response to cues when individuals 'allow' themselves to crave, and 3) sustain these changes over a time period sufficient to overcome the initial quit attempt (\~7-14 days). Aim 2 (Strategy 2): Modulating the executive system as an approach to treatment: dlPFC iTBS. Aim 2 will follow the design of Aim 1. The procedures will be identical, except iTBS will be delivered to the left dlPFC. The investigators hypothesize that iTBS will: 1) decrease the behavioral smoking measures described above, which will be explained by a selective 2) increase in the neural response to cues when individuals attempt to 'resist' the cues, and again 3) sustain these changes over a similar period as specified in Aim 1. Exploratory Aim: Evaluate baseline frontal striatal connectivity and discounting rate as factors to predict an individual's likelihood of responding to Strategy 1 versus Strategy 2. The investigators will test the hypotheses that individuals with a higher ratio of (vmPFC-striatal)/(dlPFC-striatal) connectivity will be more likely to have a behavioral change after Strategy 1. Various demographics (e.g. gender, smoking history, socioeconomic status, subclinical depressive symptoms, self-efficacy, \& motivation to quit will be evaluated as explanatory variables. The outcomes of the present aims will resolve a critical gap in the investigator's knowledge regarding the relative efficacy of 2 promising TMS treatment strategies. These outcomes will be directly translated to a larger longitudinal study evaluating a multipronged approach to improving outcomes in traditional pharmacotherapy or behavioral treatments.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
QUADRUPLE
Enrollment
25
This will be delivered with the Magventure Magpro system; 600 pulses with the active sham coil (double blinded using the USB key)
This will be delivered with the Magventure Magpro system; 600 pulses with the active sham coil (double blinded using the USB key). The MagVenture MagPro system has an integrated active sham that passes current through two surface electrodes placed on the skin beneath the B60 coil.
This will be delivered with the Magventure Magpro system; 600 pulses with the active sham coil (double blinded using the USB key).
This will be delivered with the Magventure Magpro system; 600 pulses with the active sham coil (double blinded using the USB key). The MagVenture MagPro system has an integrated active sham that passes current through two surface electrodes placed on the skin beneath the B60 coil.
Medical University of South Carolina
Charleston, South Carolina, United States
Change in Cigarette Dependence After 10 Days of Treatment
The Fagerstrom Test for Nicotine Dependence will be measured at Visit 1 and after 10 days of treatment (Visit 10). In scoring the Fagerstrom Test for Nicotine Dependence, yes/no items are scored from 0 to 1 and multiple-choice items are scored from 0 to 3. The items are summed to yield a total score of 0-10. The higher the total Fagerstrom score, the more intense is the patient's physical dependence on nicotine. .For this outcome we will measure the difference in the score for those that completed the study. This difference will be compared between the study arms.
Time frame: Baseline and 10 days
Change in Urge for a Cigarette
The urge for a cigarette will be measured at Visit 1 and after 10 days of treatment (Visit 10) using the Questionnaire of Smoking Urges 10 question assessment with a scoring range of 0-100. The lower the score, the lower the urge to smoke a cigarette. The higher the score, the higher the urge to smoke a cigarette. For this outcome we will measure the difference at Visit 10 versus Visit 1 for those that completed the study. This difference will be compared between the study arms.
Time frame: Baseline and 10 days
Changes in Cigarette Use
The number of cigarettes smoked in the previous week will be measured at Visit 1 and after 10 days of treatment (Visit 10) via an environmental momentary assessment which is passed on self-report. The dependent measure will be a 'count' of cigarettes. The difference will be compared between the study arms.
Time frame: Baseline and 10 days
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.