The purpose of this study is to evaluate if multiple therapy sessions of Transcutaneous Vagus Nerve Stimulation (tVNS) combined with robotic arm therapy lead to a greater functional recovery in upper limb mobility after stroke than that provided by robotic arm therapy in a sham stimulation condition.
Promising new animal research suggests that vagus nerve stimulation paired with motor intervention induces movement-specific plasticity in the motor cortex and improves limb function after stroke. These results were recently extended to the first clinical trial, in which patients with stroke demonstrated significant improvements in upper limb function following rehabilitation paired with implanted VNS. Currently, vagus nerve stimulation is being used clinically to treat a number of human diseases including migraine headaches, epilepsy, and depression, and these investigations are expanding to deliver stimulation via a transcutaneous route to potentially improve intervention efficacy and decrease side effects. This pilot study will combine non-invasive transcutaneous stimulation of the vagus nerve with upper limb robotic therapy to investigate the potential of tVNS to augment improvements gained with robotic therapy in patients with chronic hemiparesis after stroke.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
TRIPLE
Enrollment
36
tVNS is a non-invasive form of vagus nerve stimulation, activating the auricular branch of the vagus nerve transcutaneously through the cymba concha at the pinna of the ear.
tVNS is a non-invasive form of vagus nerve stimulation, activating the auricular branch of the vagus nerve transcutaneously through the cymba concha at the pinna of the ear. Sham tVNS means the patient is wearing the device, but it is turned off and not delivering current during the treatment. This is a placebo condition, which is used as a study control.
Feinstein Institute for Medical Research
Manhasset, New York, United States
Median Absolute Change From Baseline in Electromyographic (EMG) Peak Amplitude of the Bicep/Tricep
The median absolute change in surface electromyographic (sEMG) peak amplitude of the bicep/tricep during gravity-eliminated, unassisted extensor movements was calculated from baseline to discharge at 3 weeks (immediately following the intervention) and again at 16 weeks (3 months follow-up from the intervention) in each training condition (sham tVNS + robotic arm training vs. active tVNS + robotic arm training). Bicep and tricep peak sEMG amplitude scores were calculated as a percentage of the maximal volitional contraction (MVC), with larger values indicating a greater absolute change (negative or positive) in bicep/tricep peak muscle activity during extensor movements.
Time frame: baseline, discharge at 3 weeks (immediately following the intervention), and follow-up at 16 weeks (3 months after the intervention)
Median Change From Baseline in Upper Extremity Fugl Meyer Assessment Score
The median change in Upper Extremity Fugl-Meyer Score will be calculated from baseline to discharge at 3 weeks (immediately following the intervention) and again at 16 weeks (3 months follow-up from the intervention) in each training condition (sham tVNS + robotic arm training vs. active tVNS + robotic arm training). The median change in Upper Extremity Fugl Meyer score is reported, with a range 0-66 points, and with higher values indicating better functional status.
Time frame: baseline, discharge at 3 weeks (immediately following the intervention), and follow-up at 16 weeks (3 months after the intervention)
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.