Two scenarios may result in significant bone defect in the orbit: surgical oncology (meningioma, cancers of the upper aerodigestive tract) or severe trauma. This defect in the bone substance may affect the orbital floor, medial wall or lateral wall. These injuries can result in functional complications such as enophthalmos and diplopia, and an esthetic impact affecting the quality of life. The most frequent complication in orbital traumas is enophthalmos (10-20% according to publications). The aim of bone substance reconstruction is to restore the volume and the internal shape of the orbit. The gold standard is autologous bone grafts. The surgery which usually lasts 2 to 3 hours depending on the number of walls involved, can lead to ophthalmological or esthetic complications. Its results are unsatisfactory, and the use of titanium implants would allow a reconstruction of the orbital volume more optimal than the autograft. The development of computer-assisted techniques permitted implants evolution: initially peri-operatively preformed, today patient specific implant can be obtained from data of CT-scan. In cranioplasties, a randomized study showed better results at 12 months of these implants compared to the autograft. Their success rate is close to 100% with less than 5% of postoperative complication, while the rate used for cortical graft reconstructions is 20-25%. Today, 3D printing of patient-specific porous titanium implants is possible. A study has shown that they allow a more accurate reconstruction compared to preformed implants. This innovation is available in France but it has a high cost (2,000 euros on average) and is currently not refunded. However, the use of this technology would reduce the operating time and the morbidity per- and post-operative, with functional and esthetic results superior to those obtained with bone autograft.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
NONE
Enrollment
92
The principle of this surgery is based on the removal of a portion of the outer bone layer from the vault of the skull in order to have a flat and solid bone element (cortical bone), which can be carved freehand to better replace the defective bone wall.
From data of a patient's CT-scan, it is possible to perform a "mirroring". The unaffected orbit is mirrored onto the affected orbit, via a virtual treatment planning, in order to rely on facial symmetry to virtually restore healthy anatomy. From this simulation, the implant is 3D-printed by Selective Laser Melted (SLM) technique using titanium powder. This technique enabling the creation of custom-made implants is called computer-aided design and computer-aided manufacturing (CAD-CAM). After sterilization, the implant is ready to be placed during a surgical procedure.
Hospices Civils de Lyon, Groupement Hospitalier Sud Chirurgie maxillo-faciale
Pierre-Bénite, France
RECRUITINGIncremental cost per quality-adjusted life-years (QALY) gained
QALY will be measured by EQ-5D-3L questionnaire. At 18 months post reconstruction, we can estimate most of the costs of surgery and its consequences. Incremental cost per quality-adjusted life-years (QALY) gained between patients with 3D-printed patient specific porous titanium implant or autologous bone graft for orbital reconstruction.
Time frame: 18 months
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.