Non-invasive ventilation (NIV, delivered via a mask or cannulas) permits to reduce the need for tracheal intubation in infants who needs a ventilatory support. NIV can be delivered with nasal CPAP (continuous positive airway pressure) or NIPPV (nasal intermittent positive pressure ventilation). The synchronization of the respiratory support according to the patient's demand is very difficult to obtain in infants with the conventional ventilatory modes. In all these ventilatory modes, the end-expiratory pressure (PEEP) is fixed and set by the clinician. However, since infants are prone to alveolar collapse and must compensate for a non-compliant chest wall, an active and ongoing management of PEEP is very important to prevent the lung de-recruitment. A new respiratory support system (NeuroPAP) has been developed to address these issues of synchronization and control of PEEP. This new system uses diaphragmatic tonic activity (Edi) that reflects the patient's efforts to increase lung recruitment and therefore it continuously controls the delivery of assist continuously both during inspiration (like NAVA) and during expiration, allowing a unique neural control of PEEP. A new device, the NeuroBOX, permits to deliver NIV with NeuroPAP, CPAP, or NIPPV, and also to serve as a cardio-respiratory monitor, tracking and displaying cardiac and respiratory signals, trends, and cardio-vascular events. The two main objectives of this study are: 1- To evaluate the clinical impact of NeuroPAP in infants with high tonic Edi; 2- To characterize the cardio-respiratory pattern and its relationship with cerebral perfusion of infants with noninvasive support, using the monitoring capacity of the NeuroBOX. The investigators expect that NeuroPAP will permit to improve the efficiency of NIV in infants, through the better synchronization and the personalization of the expiratory pressure level in response to the patient needs. This study will be conducted in two subgroups of patients at high risk of elevated tonic Edi and of cardio-respiratory events: a subgroup of premature infants and a subgroup of infants with bronchiolitis.
Study Type
INTERVENTIONAL
Allocation
NON_RANDOMIZED
Purpose
TREATMENT
Masking
NONE
Enrollment
40
Patients will be successively ventilated with conventional NIV (30 min with the conventional ventilator, 30 min with the NeuroBOX), and NeuroPAP (1 hour). An additional 20-hour period of recordings (with conventional NIV) will be conducted to characterize the neural breathing pattern, prevalence of apneas and tonic activation during conventional treatment. Finally, a second 1-hour period with NeuroPAP will be conducted
Patients will be successively ventilated with conventional NIV (30 min with the conventional ventilator, 30 min with the NeuroBOX), and NeuroPAP (3 hours). An additional 20-hour period of recordings (with conventional NIV) will be conducted to characterize the neural breathing pattern, prevalence of apneas and tonic activation during conventional treatment. Finally, a second 1-hour period with NeuroPAP will be conducted
St. Justine's Hospital
Montreal, Quebec, Canada
Changes in indices of respiratory unloading
The inspiratory and tonic Edi will be extracted from the NeuroBOX during each phase. The mWCAS, a clinical scale of work of breathing, will be blindly collected during each ventilatory condition in the bronchiolitis patients.
Time frame: Last 5-minute period of each condition phase
Incidence of cardio-respiratory events
the number of apneas \>20s, with and without desaturations and with/without bradycardia, and the number of bradycardia will be extracted from the NeuroBOX. This is a descriptive analysis, not a comparative analysis.
Time frame: over 25 hours (Entire recordings)
Change in End expiratory lung volume (EELV) level
change in EELV will be assessed using the 3D video-derived volumetry, comparing the mean EELV level in the 5 minutes before and after the change of ventilatory mode (from conventional NIPPV to NeuroPAP and the reverse).
Time frame: 5-minute period before and after the change of ventilatory mode
Change in Indices of cerebral oxygenation and perfusion
FDNIRS-DCS technology will be used to measure the indices of cerebral oxygen metabolism, blood flow and tissue hemoglobin saturation
Time frame: Last 5-minute period of each condition phase
Change in comfort level in preterm infants
assessed by the bedside nurse in charge using the Pain/Agitation component of the validated scale N-PASS (neonatal pain, agitation, and sedation scale). The Pain/Agitation component varies from 0 to 10, and a lower score reflects a better comfort.
Time frame: Last 5-minute period of each condition phase
Change in comfort level in infants with bronchiolitis.
assessed by the bedside nurse in charge using the validated scale FLACC (Face, Legs, Activity, Cry, Consolability scale). The FLACC score varies from 0 to 10 and a lower score reflects a better comfort.
Time frame: Last 5-minute period of each condition phase
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.