Evolocumab has been able to reduce the incidence of cardiovascular events in patients that had at least one cardiovascular risk factor \[28\]. In patients with chronic HFrEF, as we mentioned before, treatment with statins is not recommended as it has not shown benefits in improving its prognosis. However, CAD control stands as an approach that could improve the course of the disease by preventing microlesions that further weaken the heart. A recent multicenter study, the BIOSTAT-CHF \[3436\], was performed to determine whether the PCSK9-LDLR axis could predict risk in patients with HF. A multivariate analysis, which included BIOSTAT risk scores, LDLR, and statin treatment as covariates, revealed a positive linear association between PCSK9 levels and the risk of mortality and the composite endpoint (death or HF-related hospitalization). A similar analysis for LDLR revealed a negative association with mortality and the composite endpoint. Future studies must assess whether PCSK9 inhibition will result in better outcomes in HF. There is an unmet clinical need: blockade of the neurohormonal activation has provided advances in patients with HFrEF, yet mortality and morbidity remain unacceptably high. Approaching a strict control of lipid levels and CAD with evolocumab in stable HFrEF of ischemic ethology may represent a complementary pathophysiological pathway to reduce mortality and morbidity. The burden of CAD provides a solid rationale for testing the value of evolocumab in HF patients. Therefore, a pilot trial is proposed to evaluate the beneficial effect of evolocumab by surrogate biological markers before considering an event analysis study. Evolocumab reduces the risk of cardiovascular events in patients with established atherosclerotic disease, so this drug could play a role in HFrEF of ischemic etiology, by limiting macro- and micro-vascular coronary disease progression. In HFrEF patients due to ischemic etiology, there is a continuous troponin release due to persistent myocyte injury, which has been associated with adverse outcomes. Our hypothesis is that evolocumab may have the potential to reduce circulating hs-TnT levels, as a surrogate of myocyte injury due to atheroma progression in HFrEF. A positive result in this EVO-HF Pilot study may lead to the set-up of a large-scale multicenter prospective and randomized events study analyzing the role of lipid-lowering treatment by means of evolocumab in HFrEF of ischemic etiology
Evolocumab has been able to reduce the incidence of cardiovascular events in patients that had at least one cardiovascular risk factor \[28\]. In patients with chronic HFrEF, as we mentioned before, treatment with statins is not recommended as it has not shown benefits in improving its prognosis. However, CAD control stands as an approach that could improve the course of the disease by preventing microlesions that further weaken the heart. A recent multicenter study, the BIOSTAT-CHF \[3436\], was performed to determine whether the PCSK9-LDLR axis could predict risk in patients with HF. A multivariate analysis, which included BIOSTAT risk scores, LDLR, and statin treatment as covariates, revealed a positive linear association between PCSK9 levels and the risk of mortality and the composite endpoint (death or HF-related hospitalization). A similar analysis for LDLR revealed a negative association with mortality and the composite endpoint. Future studies must assess whether PCSK9 inhibition will result in better outcomes in HF. There is an unmet clinical need: blockade of the neurohormonal activation has provided advances in patients with HFrEF, yet mortality and morbidity remain unacceptably high. Approaching a strict control of lipid levels and CAD with evolocumab in stable HFrEF of ischemic ethology may represent a complementary pathophysiological pathway to reduce mortality and morbidity. The burden of CAD provides a solid rationale for testing the value of evolocumab in HF patients. Evolocumab reduces the risk of cardiovascular events in patients with established atherosclerotic disease, so this drug could play a role in HFrEF of ischemic etiology, by limiting macro- and micro-vascular coronary disease progression. In HFrEF patients due to ischemic etiology, there is a continuous troponin release due to persistent myocyte injury, which has been associated with adverse outcomes. Our hypothesis is that evolocumab may have the potential to reduce circulating hs-TnT levels, as a surrogate of myocyte injury due to atheroma progression in HFrEF. A positive result in this EVO-HF Pilot study may lead to the set-up of a large-scale multicenter prospective and randomized events study analyzing the role of lipid-lowering treatment by means of evolocumab in HFrEF of ischemic etiology. Therefore, a pilot trial is proposed to evaluate the beneficial effect of evolocumab by surrogate biological markers before considering an event analysis study.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
SINGLE
Enrollment
46
Evolocumab is a human IgG2 monoclonal antibody, it will add to patient treatment during 12 months.
Hospital Universitari Germans Trias i Pujol
Badalona, Barcelona, Spain
Hospital Universitario Virgen del Rocío
Seville, Spain
Hospital Clínico de Valencia
Valencia, Spain
Change in hs-TnT levels at 1 year
Change of high-sensitivity troponin T (hs-TnT) levels from baseline to 1 year.
Time frame: at 12 months of follow-up
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.