Severe pediatric acute respiratory distress syndrome (PARDS) is a life-threatening and frequent problem experienced by thousands of children each year. Little evidence supports current supportive practices during their critical illness. The overall objective of this study is to identify the best positional and/or ventilation practice that leads to improved patient outcomes in these critically ill children. We hypothesize that children with high moderate-severe PARDS treated with either prone positioning or high-frequency oscillatory ventilation (HFOV) will demonstrate more days off the ventilator when compared to children treated with supine positioning or conventional mechanical ventilation (CMV).
PROSpect is a two-by-two factorial, response-adaptive, randomized controlled clinical trial of supine/prone positioning and conventional mechanical ventilation (CMV)/high-frequency oscillatory ventilation (HFOV). About 60 pediatric intensive care units (PICUs), two thirds U.S. and one third international, with at least 5 years of experience with prone positioning and HFOV in the care of pediatric patients with severe Pediatric Acute Respiratory Distress Syndrome (PARDS), that can provide back-up extracorporeal membrane oxygenation (ECMO) support, are participating. Eligible consecutive subjects with high moderate-severe PARDS will be randomized to one of four groups: supine/CMV, prone/CMV, supine/HFOV, prone/HFOV. Subjects who fail their assigned positional and/or ventilation therapy for either persistent hypoxia or hypercapnia may receive the reciprocal therapy while being considered for ECMO cannulation. Our primary outcome is ventilator-free days (VFD) through day 28, where non-survivors receive zero VFD. We hypothesize that children with severe PARDS treated with either prone positioning or HFOV will demonstrate ≥ 2 more VFD. Our secondary outcome is nonpulmonary organ failure-free days. We will also explore the interaction effects of prone positioning with HFOV on VFDs and also investigate the impact of these interventions on 90-day in-hospital mortality and, among survivors, the duration of mechanical ventilation, PICU and hospital length of stay, and the trajectory of post-PICU functional status and health-related quality of life (HRQL). Up to 600 subjects with severe PARDS will be randomized, stratified by age group and direct/indirect lung injury. Adaptive randomization will first occur after 300 patients are randomized and have been followed for 28 days, and every 100 patients thereafter. At these randomization update analyses, new allocation probabilities will be computed based on ongoing intention-to-treat trial results, increasing allocation to well performing arms and decreasing allocation to poorly performing arms. Data will be analyzed per intention-to-treat for the primary analyses and per-protocol received for primary, secondary and exploratory analyses.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
NONE
Enrollment
600
Supine positioning: Subjects randomized to supine positioning will remain supine. Prone positioning: Subjects randomized to prone positioning will be positioned prone ≥16 hours/day for a maximum of 28 days. CMV strategy: Low tidal volume to obtain exhaled Vt of 5-7 ml/kg (ideal body weight), PIP goal limited to ≤ 28 cm H2O and lung recruitment maneuver to identify best PEEP then maintained per PEEP-FiO2 grid. HFOV strategy: Frequency at 8-12 Hz, amplitude (delta-P) 60-90 and mPaw recruitment maneuver.
Children's of Alabama
Birmingham, Alabama, United States
Banner Health
Phoenix, Arizona, United States
Arkansas Children's Hospital
Little Rock, Arkansas, United States
Children's Hospital Orange County
Orange, California, United States
Stanford Children's Health
Palo Alto, California, United States
Ventilator-free Days (VFD)
Our primary research hypothesis is that children with severe PARDS randomized to either prone positioning or HFOV will demonstrate more ventilator-free days. We hypothesize that a superior treatment would improve VFD by at least 2 days, a clinically meaningful difference. VFD is the number of days within 28 days that a patient is alive and free of mechanical ventilation. Improvement in VFD will be considered within the context of patient safety; specifically, patients must also exhibit a similar safety profile.
Time frame: 28 days
Nonpulmonary organ failure-free days (OFFD)
Our secondary research hypothesis is that children with severe PARDS randomized to either prone positioning or HFOV will demonstrate more more nonpulmonary organ failure-free days. OFFD is the number of days within 28 days that a patient is alive and free of clinically significant non-pulmonary organ failure. Nonpulmonary organ failure-free days will be calculated based on the clinically important nonpulmonary organ systems (neurologic, cardiovascular, renal and hematologic) using nonpulmonary PEdiatric Logistic Organ Dysfunction-2 (PELOD-20 scores.
Time frame: 28 days
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.
Kapiolani Medical Center for Women and Children
Honolulu, Hawaii, United States
Ann & Robert Lurie Children's Hospital of Chicago
Chicago, Illinois, United States
Riley Hospital for Children at IU Health
Indianapolis, Indiana, United States
University of Iowa Stead Family Chlldren's Hospital
Iowa City, Iowa, United States
Norton Children's Hospital
Louisville, Kentucky, United States
...and 39 more locations