The aim of this study is to examine if automated oxygen delivery with O2matic allows for faster weaning from oxygen supply and better oxygen control than manually controlled oxygen therapy for patients admitted to the emergency department with acute hypoxemia. Furthermore it will be tested if O2matic compared to manual control allows for earlier discharge.
Closed-loop control of oxygen therapy is described in the literature used for preterm infants, trauma patients, medical emergency use, and for patients with Chronic Obstructive Pulmonary Disease (COPD). O2matic is a closed-loop system that is based on continuous and non-invasive measurement of pulse rate and oxygen-saturation (SpO2). The algorithm in O2matic controls oxygen delivery with the aim of keeping the SpO2 within the desired interval, which could be 88-92 % for patients at risk of hypercapnia or 94-98 % for patients with pneumonia, asthma exacerbation, heart failure and other medical emergencies, according to guidelines from British Thoracic Society (BTS). SpO2-interval can be set for the individual patients, as can the range of acceptable oxygen-flow. If SpO2 or oxygen-flow cannot be maintained within the desired intervals an alarm will sound. All studies on closed-loop systems have shown that this method is better than manually control by nurse to maintain saturation within the desired interval. Furthermore, some studies have indicated that closed-loop has the possibility to reduce admission time and to reduce time spent with oxygen therapy, due to more efficient and faster withdrawal from oxygen supplementation. In the present study O2matic will be tested versus manual control, for patients admitted to the emergency department with acute hypoxemia due to any reason, except for carbon monoxide (CO) poisoning and other conditions where SpO2 is not a reliable measure of hypoxemia. During the study the patients will either have oxygen controlled with O2matic or manually by nursing staff for 24 hours or until discharge or weaning from oxygen supply. All patients will have continuous logging of pulse rate, oxygen-saturation and oxygen-flow with O2matic, but only in the O2matic active group, the algorithm will control oxygen-delivery. The primary hypothesis is that O2matic compared to manual control allows for faster weaning from oxygen supplementation, and that more patients will be weaned from oxygen supplementation within a time frame of 24 hours. Furthermore it will be tested if O2matic compared to manual control allows for earlier hospital discharge. It will be tested if O2matic is better than manual control in maintaining oxygen-saturation within the desired interval and reducing time with unintended hypoxia and hyperoxia. No safety issues has been reported in the literature. O2matic is approved in Europe with "Conformité Européenne" (CE) mark, and approved for clinical testing by The Danish Medicines Agency, The Ethics Committee in the Capital Region of Denmark and by the regional Data Protection Board. The study will be conducted according to Good Clinical Practice (GCP) standards with independent monitoring. All adverse events and serious adverse events will be monitored and serious adverse events will be reported to Danish Medicines Agency.
O2matic controls oxygen supply with a closed-loop feedback from a pulse oximeter. The aim is to maintain SpO2 within a predefined target interval according to guidelines for the specific condition causing hypoxemia, with the lowest possible supplementation of oxygen.
Amager Hospital
Copenhagen, Denmark
Hvidovre Hospital
Hvidovre, Denmark
Probability of weaning from oxygen within 24 hours
Fraction of patients weaned from oxygen supplementation within 24 hours
Time frame: 24 hours
Probability of weaning from oxygen within 12 hours
Fraction of patients weaned from oxygen supplementation within 12 hours
Time frame: 12 hours
Duration of admission
Time from admission to emergency department to discharge from hospital
Time frame: 30 days
Time within SpO2 target interval
Fraction of time within prescribed SpO2 interval in O2matic and manual arm
Time frame: 24 hours
Time with minor hypoxemia
Fraction of time with SpO2 at 1 to 3 percentage points below target interval
Time frame: 24 hours
Time with severe hypoxemia
Fraction of time with SpO2 at 4 or more percentage points below target interval
Time frame: 24 hours
Time with hyperoxia
Fraction of time with SpO2 above target interval in O2matic and manual arm
Time frame: 24 hours
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
NONE
Enrollment
30