The overall goal of the proposed work is to develop and to assess the feasibility of using functional electrical stimulation (FES) system to improve crouch gait in individuals with cerebral palsy that may prevent the typical downward spiral of walking function decline in individuals with CP that occurs from adolescence into adulthood.
Aim 1: To assess the feasibility of using a multiple channel FES system to produce an immediate neuroprosthetic effect to reduce crouch gait in children and adolescents with spastic diplegic CP. Aim 2: To assess the feasibility of using a multiple channel FES system as a therapeutic training tool to produce lasting neurotherapeutic effects of diminished crouch gait in children and adolescents with CP.
Study Type
INTERVENTIONAL
Allocation
NA
Purpose
TREATMENT
Masking
NONE
Enrollment
13
Functional electrical stimulation - electrical stimulation applied to a muscle during an activity (i.e. ankle dorsiflexors during swing phase of gait). It assists / elicits muscle activation in order to achieve a task.
Shriners Hospitals for Children, Philadelphia
Philadelphia, Pennsylvania, United States
Change in the Muscle Tone
We use the Modified Ashworth Scale to measure resistance to passive movement about a joint with varying degree of velocity (Muscle tone/spasticity). Score ranges from 0-4, with 6 choices where score of 0 means no increase in tone and score of 4 means rigid limb with no flexion or extension. Our training approach using repetitive electrical stimulation may also lower spasticity, which can also facilitate improved functional mobility.
Time frame: Change from the baseline Modified Ashworth Scale at 14 weeks (post training)
Change in the Muscle Tone
We use the Modified Ashworth Scale to measure resistance to passive movement about a joint with varying degree of velocity (Muscle tone/spasticity). Score ranges from 0-4, with 6 choices where score of 0 means no increase in tone and score of 4 means rigid limb with no flexion or extension. Our training approach using repetitive electrical stimulation may also lower spasticity, which can also facilitate improved functional mobility.
Time frame: Change from the baseline Modified Ashworth Scale at 27 weeks (Follow up)
Metabolic Cost of Walking
Walking Energy Expenditure will be measured via indirect calorimetry at the subject's self-selected walking speed. The subject will walk on the treadmill while breathing into a VMax gas-dilution SensorMedics metabolic measurement system. The subject will warm up at a slow walking speed for 3 minutes, walk for approximately 5 minutes at the subject's self-selected walking speed until steady state is reached, and then sit for a 3-minute cool down. The metabolic cost of walking is computed over the 5-minute walking period.
Time frame: Change from the baseline Metabolic Cost of Walking at 14 weeks (post training)
Metabolic Cost of Walking
Walking Energy Expenditure will be measured via indirect calorimetry at the subject's self-selected walking speed. The subject will walk on the treadmill while breathing into a VMax gas-dilution SensorMedics metabolic measurement system. The subject will warm up at a slow walking speed for 3 minutes, walk for approximately 5 minutes at the subject's self-selected walking speed until steady state is reached, and then sit for a 3-minute cool down. The metabolic cost of walking is computed over the 5-minute walking period.
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.
Time frame: Change from the baseline Metabolic Cost of Walking at 27 weeks (Follow up)
Change in the Walking Speed
Walking Speed is measured via the 10-meter walk test. This time taken to complete the task is used to compute the average walking speed referred to as "self-selected" walking speed.
Time frame: Change from the baseline Walking speed at 14 weeks (Post training)
Change in the Walking Speed
Walking Speed is measured via the 10-meter walk test. This time taken to complete the task is used to compute the average walking speed referred to as "self-selected" walking speed.
Time frame: Change from the baseline Walking speed at 27 weeks (Follow up)
Change in the Walking Distance
Walking distance (in a fixed period of time) is an indicator of endurance. Walking Distance is measured via the 6-minute walk test. Improved motor learning and gait biomechanics from the training methods would improve gait efficiency and thus, endurance.
Time frame: Change from the baseline Walking Distance at 14 weeks (Post training)
Change in the Walking Distance
Walking distance (in a fixed period of time) is an indicator of endurance. Walking Distance is measured via the 6-minute walk test. Improved motor learning and gait biomechanics from the training methods would improve gait efficiency and thus, endurance.
Time frame: Change from the baseline Walking Distance at 27 weeks (Follow up)
Change in Gross Motor Function Measure
Gross Motor Function will be assessed via sections D and E of the Gross Motor Function Measure (GMFM) test. This test is designed to evaluate changes in gross motor function over time of children with CP.
Time frame: Change from the baseline GMFM score at 14 weeks (Post training)
Change in Gross Motor Function Measure
Gross Motor Function will be assessed via sections D and E of the Gross Motor Function Measure (GMFM) test. This test is designed to evaluate changes in gross motor function over time of children with CP.
Time frame: Change from the baseline GMFM score at 27 weeks (Follow up)
Change in the Timed Up-And-Go (TUG time)
Timed Up-And-Go (TUG) is a measure designed to assess functional mobility and balance. The subjects will be seated on an adjustable bench such that the knees and angles are at 90 degrees. Subjects will be timed as they rise, walk 3 meters, turn around, return to the bench and sit down again.assessing the impact of anticipated improvements in motor control and gait biomechanics.
Time frame: Change from the baseline Time Up and Go time at 14 weeks (Post training)
Change in the Timed Up-And-Go (TUG time)
Timed Up-And-Go (TUG) is a measure designed to assess functional mobility and balance. The subjects will be seated on an adjustable bench such that the knees and angles are at 90 degrees. Subjects will be timed as they rise, walk 3 meters, turn around, return to the bench and sit down again.assessing the impact of anticipated improvements in motor control and gait biomechanics.
Time frame: Change from the baseline Time Up and Go time at 27 weeks (Follow up)
Change in the Mini Balance Evaluation Systems Test Score
Balance Evaluation Systems Test (BESTest) is a measure of balance function. The BESTest will allow for assessing the impact of anticipated improvements in motor control and gait biomechanics from training on balance. The test has a maximum score of 28 points and minimum score of zero. Score of 28 means highest level of function and 0 means lowest level of function.
Time frame: Change from the baseline Mini BESTest score at 14 weeks (Post training)
Change in the Mini Balance Evaluation Systems Test Score
Balance Evaluation Systems Test (BESTest) is a measure of balance function. The BESTest will allow for assessing the impact of anticipated improvements in motor control and gait biomechanics from training on balance. The test has a maximum score of 28 points and minimum score of zero. Score of 28 means highest level of function and 0 means lowest level of function.
Time frame: Change from the baseline Mini BESTest score at 27 weeks (Follow up)
Change in the Electromyography
Muscle activation timing measured with Electromyography during gait analysis allows for mechanistic study of anticipated improvements in motor control and gait as well as comparison to typical norms.
Time frame: Change from the baseline Muscle activation at 14 weeks (Post training)
Change in the Electromyography
Muscle activation timing measured with Electromyography during gait analysis allows for mechanistic study of anticipated improvements in motor control and gait as well as comparison to typical norms.
Time frame: Change from the baseline Muscle activation at 27 weeks (Follow up)
Changes in the Activities-Specific Balance Scale Score
The Activities-Specific Balance Scale (ABC Scale) survey allows measurement of perceived functional mobility by assessing balance confidence to perform daily activities of living without falling. 16 items are rated on a rating scale with range of 0-100. Score of 0 means no confidence and 100 means complete confidence. Average score of 16 items is the overall score. Such measures will assess the impact of anticipated improvements in motor control and gait bio-mechanics from training.
Time frame: Change from the baseline ABC scale score at 14 weeks (Post training)
Changes in the Activities-Specific Balance Scale Score
The Activities-Specific Balance Scale (ABC Scale) survey allows measurement of perceived functional mobility by assessing balance confidence to perform daily activities of living without falling. 16 items are rated on a rating scale with range of 0-100. Score of 0 means no confidence and 100 means complete confidence. Average score of 16 items is the overall score. Such measures will assess the impact of anticipated improvements in motor control and gait bio-mechanics from training.
Time frame: Change from the baseline ABC scale score at 27 weeks (Follow up)
Changes in the Participation in Life Events survey score
Participation in life events (LIFE-H) survey measures how much a person is engaging or participating with their peers and community. Weighted score ranges between 0-10 with 0 score being no accomplishment and 10 means complete accomplishment. Such measures will assess the impact of anticipated improvements in motor control and gait biomechanics from training.
Time frame: Change from the baseline LIFE-H scale score at 14 weeks (Post training)
Changes in the Participation in Life Events survey score
Participation in life events (LIFE-H) survey measures how much a person is engaging or participating with their peers and community. Weighted score ranges between 0-10 with 0 score being no accomplishment and 10 means complete accomplishment. Such measures will assess the impact of anticipated improvements in motor control and gait biomechanics from training.
Time frame: Change from the baseline LIFE-H scale score at 27 weeks (Follow up)
Change in Piers-Harris Children's Self-Concept Scale score
Self-Perception will be measured via the Piers-Harris Children's Self-Concept Scale, Second Edition (Piers-Harris 2). This test is designed to measure self-concept as reported by the individual. It measures physical and emotional well-being and self-esteem and will allow assessment of the impact of anticipated improvements in motor control and gait biomechanics from training. The tool consists of 60 items that require the respondent to respond by circling "Yes" or "No." Raw scores are converted to standardized t-scores (mean = 50, standard deviation = 10) and percentile ranks. T-Score ranges for the total scale are: \<29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T average, 56T-59T- is high average, 60T-69T is high and \> 70T is very high. For the six subscales T-Score ranges \< 29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T is average and \> 56T is above average.
Time frame: Change from the baseline Piers-Harris Children's Self-Concept scale score at 14 weeks (Post training)
Change in Piers-Harris Children's Self-Concept Scale score
Self-Perception will be measured via the Piers-Harris Children's Self-Concept Scale, Second Edition (Piers-Harris 2). This test is designed to measure self-concept as reported by the individual. It measures physical and emotional well-being and self-esteem and will allow assessment of the impact of anticipated improvements in motor control and gait biomechanics from training. The tool consists of 60 items that require the respondent to respond by circling "Yes" or "No." Raw scores are converted to standardized t-scores (mean = 50, standard deviation = 10) and percentile ranks. T-Score ranges for the total scale are: \<29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T average, 56T-59T- is high average, 60T-69T is high and \> 70T is very high. For the six subscales T-Score ranges \< 29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T is average and \> 56T is above average.
Time frame: Change from the baseline Piers-Harris Children's Self-Concept scale score at 27 weeks (Follow up)
Change in Joint angles
Hip, Knee and Ankle Joint Angles (Kinematic data) are measured using Instrumented gait analysis (Motion capture analysis system) during seven different gait phases.
Time frame: Change from the baseline Joint angles at 14 weeks (Post training)
Change in Joint angles
Hip, Knee and Ankle Joint Angles (Kinematic data) are measured using Instrumented gait analysis (Motion capture analysis system) during seven different gait phases.
Time frame: Change from the baseline joint angles at 27 weeks (Follow up)