In burn patients, the wound healing process may lead to a fibrotic hypertrophic scar, which is raised, inflexible and responsible functional impairments. There are few studies which have investigated the effect of extracorporeal shock wave therapy (ESWT) on hypertrophic scar characteristics using objective measurements. Thus, this study aimed to ascertain the effects of ESWT on burn scars using objective measurements. This double-blinded, randomized, controlled trial involved 36 patients with burns. Patients were randomized into a ESWT (an energy flux density (EFD) of 0.05 to 0.30 mJ/mm2, frequency of 4Hz, and 1000 to 2000 impulses) or a sham stimulation group.
In burn patients, the wound healing process may lead to a fibrotic hypertrophic scar, which is raised, inflexible and responsible functional impairments. There are few studies which have investigated the effect of extracorporeal shock wave therapy (ESWT) on hypertrophic scar characteristics using objective measurements. Thus, this study aimed to ascertain the effects of ESWT on burn scars using objective measurements. This double-blinded, randomized, controlled trial involved 36 patients with burns. Patients were randomized into a ESWT (an energy flux density (EFD) of 0.05 to 0.30 mJ/mm2, frequency of 4Hz, and 1000 to 2000 impulses) or a sham stimulation group. Each intervention was applied to the hypertrophic scars of upper extremities after autologous split-thickness skin grafting (STSG) using Materiderm for 4 weeks once per week. The ESWT group (n=18) received shock waves with low-energy flux density (0.05-0.30 mJ/mm2). The interval between treatments is a 1-week. The ESWT group also received standard treatment. The control group (n=18) received sham stimulation with standard treatment. The investigators compared the skin quality of the ESWT and control groups. Participants were made comfortable and acclimatized to room conditions. Room temperature was maintained at 20-25'C and relative humidity at 40-50 %. In the supine position, skin properties were measured. The thickness was measured with a ultrasonic wave equipment (128 BW1 Medison, Korea). Mexameter® (MX18, Courage-Khazaka Electronics GmbH, Germany) was used to measure melanin levels and the severity of erythema. The higher values indicating a darker and redder skin. TEWL was measured with a Tewameter® (Courage-Khazaka Electronic GmbH, Germany), which is used for evaluating water evaporation. Sebum in the scars was measured with the Sebumeter® (Courage-Khazaka Electronic GmbH, Germany). The measurement is based on the principle of grease-spot photometry using a cassette with its special tape. A microprocessor calculates the result, which is shown on the display in mg/cm2. Elasticity was measured using Cutometer SEM 580® (Courage-Khazaka Electronic GmbH, Cologne, Germany), which applies negative pressure (450 mbar) on the skin. The numeric values (mm) of the skin's distortion is presented as the elasticity. Two seconds of negative pressure of 450 mbar is followed by 2 s of recess, and this consists of a complete cycle. Three measurement cycles were conducted, and the average values were obtained.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
DOUBLE
Enrollment
48
ESWT was conducted using the Duolith SD-1® device (StorzMedical, Tägerwilen, Switzerland) with an electromagnetic cylindrical coil source for the focused shock wave (Fig. 2). ESWT was performed around the primary treatment site at 100 impulses/cm2, an energy flux density(EFD) of 0.05 to 0.30 mJ/mm2, frequency of 4Hz, and 1000 to 2000 impulses were administered at 1-week intervals for 4 sessions.
Standard accupational therapy consist of range of motion exercise, strengthening exercises, and activities of daily living exercises
Hangang Sacred Heart Hospital
Seoul, Yeong-deungpo-Dong, South Korea
scar thickness
The thickness was measured with a ultrasonic wave equipment
Time frame: 4 weeks
skin darkness
the degree of pigmentation and melanin level, the higher values indicating a darker(AU)
Time frame: 4 weeks
skin reddness
the degree of erythema, the higher values indicating a redder skin(AU)
Time frame: 4 weeks
skin dryness
evaluating the degree of water evaporation(g/h/m2). the higher values indicating a skin dryness
Time frame: 4 weeks
sebum level
measurement is based on the principle of grease-spot photometry using a cassette with its special tape. A microprocessor calculates the result, which is shown on the display in mg/cm2
Time frame: 4 weeks
Elasticity
which applies negative pressure (450 mbar) on the skin. The numeric values (mm) of the skin's distortion is presented as the elasticity. Two seconds of negative pressure of 450 mbar is followed by 2 s of recess, and this consists of a complete cycle. Three measurement cycles were conducted, and the average values were obtained
Time frame: 4 weeks
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.