The precise planning of TIPS, especially individual selection of stent diameter, is a hot and difficult topic in the field. We have successfully developed a non-invasive technology to evaluate hepatic venous pressure gradient and portal pressure gradient based on three-dimensional modeling and fluid dynamics simulation. We propose the concept of virtual stent-based portal pressure gradient for the first time. With invasive pressure as reference, the accuracy of virtual stent-based portal pressure gradient will be evaluated in levels of animal experiments and clinical trials. The predictive value of virtual stent-based portal pressure gradient for individualized selection of TIPS stent diameter will be further assessed.
Transjugular intrahepatic portosystemic shunt (TIPS) is an effective treatment for portal hypertension related variceal bleeding. The precise planning of TIPS, especially individual selection of stent diameter, is a hot and difficult topic in the field. A stent with smaller diameter cannot effectively reduce portal pressure, and a stent with larger diameter might cause hepatic encephalopathy resulted from excessive blood shunt. Therefore, individualized selection of TIPS stent diameter closely correlates with intervention effect and clinical outcomes. In our previous study, we have successfully developed a non-invasive technology to evaluate hepatic venous pressure gradient and portal pressure gradient based on three-dimensional modeling and fluid dynamics simulation. In this project, we propose the concept of virtual stent-based portal pressure gradient for the first time. Accurate three-dimensional models of hepatic-portal vein system with stents of different diameters will be reconstructed using imaging control and modeling software. In addition, a standard procedure of fluid dynamics simulation will be fixed with the platform of finite element calculation. With invasive pressure as reference, the accuracy of virtual stent-based portal pressure gradient will be evaluated in levels of animal experiments and clinical trials. Lastly, the predictive value of virtual stent-based portal pressure gradient for individualized selection of TIPS stent diameter will be further assessed.
Study Type
OBSERVATIONAL
Enrollment
60
a non-invasive technology to evaluate hepatic venous pressure gradient and portal pressure gradient based on three-dimensional modeling and fluid dynamics simulation
First Affiliated Hospital of Zhejiang University
Hangzhou, China
Accuracy of vsPPG
To assess the accuracy of vsPPG at the clinical level(virtual PPG values and real PPG value)
Time frame: 1 day
Guiding value of vsPPG
To assess the Guiding value of vsPPG at the level of animal experiments(the predictive value of virtual stent-based portal pressure gradient for individualized selection of TIPS stent diameter)
Time frame: 1 day
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.