Although Balance Evaluation Systems Test(BESTest) is an important balance assessment tool to differentiate balance deficits, it is time consuming and tiring for hemiparetic patients. Using artificial neural networks(ANNs) to estimate balance status can be a practical and useful tool for clinicians. The aim of this study was to compare manual BESTest results and ANNs predictive results and to determine the highest contributions of BESTest sections by using ANNs predictive results of BESTest sections. 66 hemiparetic individuals were included in the study. Balance status was evaluated using the BESTest. 70%(n=46), of the dataset was used for learning, 15%(n=10) for evaluation, and 15%(n=10) for testing purposes in order to model ANNs. Multiple linear regression model(MLR) was used to compare with ANNs.
The demographics and clinical information of the participants' were recorded. Clinical information consists of some basic medical data for the patients. Hodkinson Mental Test was used to assess the cognitive status of the participants if they met inclusion criteria. Balance Evaluation Systems Test was used to assess balance status of the participants. Feed-forward back-propagation ANNs was used in this study by employing Levenberg-Marquardt training algorithm. Tangent hyperbolic transfer functions were used in the hidden layer. Matlab (Version R2017b, Mathworks Inc, USA) was used in ANNs modeling. 70% (n=46), 15% (n=10) and 15% (n=10) of the data obtained from the participants were used for training, validation and test in the study, respectively. Multiple linear regression (MLR) models also were used to compare with ANNs. Firstly, the ANNs were modeled for the first aim of the study. We used the data of the five traditional balance tests in the BESTest that did not use the real values (the timing or distance), but just the classified values (0-3 points in the BESTest) to train ANNs. Five balance tests were functional reach test (cm), one leg standing test for right and left side (sec), 6-metre timed walk test (sec) and timed up and go test (sec). Then, we compare the manual total BESTest scores with the predicted scores by the ANNs. Secondly, we removed 6 sections of the BESTest one by one and modeled with the remaining 5 sections of the test to estimate the total BESTest score. After this modeling, we removed each item one by one in the first section and estimated the first section total score. We repeated the process for all the sections of the BESTest. Statistical Analysis
Study Type
OBSERVATIONAL
Enrollment
66
Balance Evaluation Systems Test application
Balance Evaluation Systems Test (BESTest)
Biomechanical constraints, stability limits/verticality, anticipatory postural adjustments, postural responses, sensory orientation and stability in gait
Time frame: two years
Artificial Neural Networks Modeling
comparing the manual total BESTest scores with the predicted scores by the ANNs
Time frame: two years
Artificial Neural Networks Modeling
determining the highest contributions of BESTest subsets in order to find ANNs predictive results of BESTest subsets.
Time frame: two years
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.