General anesthesia (GA) is a medically induced state of unresponsiveness and unconsciousness, which millions of people experience every year. Despite its ubiquity, a clear and consistent picture of the brain circuits mediating consciousness and responsiveness has not emerged. Studies to date are limited by lack of direct recordings in human brain during medically induced anesthesia. Our overall hypothesis is that the current model of consciousness, originally proposed to model disorders and recovery of consciousness after brain injury, can be generalized to understand mechanisms of consciousness more broadly. This will be studied through three specific aims. The first is to evaluate the difference in anesthesia sensitivity in patients with and without underlying basal ganglia pathology. Second is to correlate changes in brain circuitry with induction and emergence from anesthesia. The third aim is to evaluate the effects of targeted deep brain stimulation on anesthesia induced loss and recovery of consciousness. This study focuses on experimentally studying these related brain circuits by taking advantage of pathological differences in movement disorder patient populations undergoing deep brain stimulation (DBS) surgery. DBS is a neurosurgical procedure that is used as treatment for movement disorders, such as Parkinson's disease and essential tremor, and provides a mechanism to acquire brain activity recordings in subcortical structures. This study will provide important insight by using human data to shed light on the generalizability of the current model of consciousness. The subject's surgery for DBS will be prolonged by up to 40 minutes in order to record the participant's brain activity and their responses to verbal and auditory stimuli.
Study Type
OBSERVATIONAL
Enrollment
63
Target effect-site concentration of propofol will be started at 1.4 μg/mL and will be increased by 0.3 μg/mL with reassessment until endpoints are achieved.
Nader Pouratian
Dallas, Texas, United States
Propofol dose response curve
Serum concentration of propofol throughout targeted infusion will be correlated with the patient's response to behavioral assessments in order to predict the time course of plasma and effect site concentration of propofol, establishing differential anesthetic sensitivity profiles.
Time frame: baseline
Behavioral assessment of propofol induced loss / recovery of consciousness and responsiveness
For each experiment, three behavioral responses will be evaluated: (1) loss/recovery of spontaneous movement (i.e., loss and recovery of responsiveness) (2) loss/recovery of movement in response to stimuli (separately to clicks \[non-salient\] and verbal stimuli \[salient\]), and (3) loss/recovery of movement to command (verbal command with patient name with instruction to open their eyes, as proxy of loss/recovery of consciousness).
Time frame: baseline
Electrocorticogram (ECoG) and pallidal Local Field Potential (LFP) recordings
Cortical ECoG and Globus Pallidus internus / Globus Pallidus externus (GPi/GPe) LFP recordings will occur during DBS implantation surgery during both induction and emergence with target-controlled infusion of propofol changes in network parameters. Neurophysiological signals will be correlated the evolution of behavioral measures of loss of consciousness and responsiveness during propofol infusion.
Time frame: baseline
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.