The purpose of this study is to establish a standardized process for obtaining digital pathological image information of ocular tumors; use modern pathological techniques to obtain the co-expression information of multiple biomarkers in the pathological tissues of ocular tumors, and finally construct standardized digital ocular tumors with biomarkers Pathology image database.
This study is a prospective study. Patients with common and representative ocular tumors in the Department of Ophthalmology, Peking University Third Hospital, will be selected and enrolled after informed consent to collect basic clinical information, preoperative blood samples, and ocular tumors Obtain pathological image annotation data and genomics-related data from ocular tumor tissue specimens, use blood samples for genomics information analysis, provide multi-dimensional data for the development of artificial intelligence algorithms, and establish artificial intelligence-assisted image data for eye tumors Standardize the process and establish a multi-modal ocular tumor standardized database of "clinical information-tissue samples-pathological images-genomics data". The database and the diagnosis system are correlated with each other to provide optimal image data for later machine learning and related algorithm establishment, and finally the investigators will be completed the design of a new artificial intelligence-assisted diagnosis system for eye tumors.
Study Type
OBSERVATIONAL
Enrollment
100
To compare the diagnostic accuracy of OPAL and IHC for melanoma and other tumors.
The result of OPAL automatic analysis will be compared with IHC manual counting analysis.The accuracy of the study will be declared "success" if OPAL automatic analysis meet more than 85% of the manual count for all antibody.
Time frame: Up to 24 weeks.
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.