Traditional management of community-acquired pneumonia (CAP) relies on the prompt administration of antimicrobials that target the most common causative pathogens. Retrospective analysis of observational clinical studies in CAP showed that the addition of macrolides to standard antibiotic therapy conferred a significant survival benefit. The proposed benefit of macrolides is coming from their anti-inflammatory mode of action. An RCT that proves the attenuation of the high inflammatory burden of the host with CAP after addition of clarithromycin in the treatment regimen is missing. This RCT is aiming to prove that addition of oral clarithromycin to a β-lactam rapidly attenuates the high inflammatory burden of the host in CAP.
Community-acquired pneumonia (CAP) is one of the most common bacterial infections and a leading cause of death globally since many patients deteriorate into sepsis and organ dysfunction. Traditional management relies on the prompt administration of antimicrobials that target the most common causative pathogens namely Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Although there was some hesitancy in the former guidelines of the Infectious Diseases Society of America (IDSA) and of the American Thoracic Society (ATS) to suggest a clear-cut role of macrolides for the management of CAP, the new guidelines published by the ATS in 2019 clearly suggest for the management of all cases of CAP either treated as out-patients or as in-patients with a combination of β-lactam with macrolides. The shift in the position of ATS expressed in the 2019 guidelines is coming from the growing body of evidence that the addition of a macrolide in the treatment regimen of CAP is accompanied by considerable survival benefit. This finding is mainly coming from the retrospective analysis of observational clinical studies in CAP. Results were also supported by the meta-analysis of these studies . Superiority coming from the macrolide use is mainly shown in cases of severe CAP i.e. situations with pneumonia severity index (PSI) greater than 2 that are most commonly caused by S.pneumoniae. The proposed benefit of macrolides is coming from their anti-inflammatory mode of action. This statement generates two main questions: a) what an anti-inflammatory mode of action consists of in the clinical setting; and b) is this a common property for all macrolides? Although it is easy to suggest that an antimicrobial modulates immune responses in vitro, it is extremely difficult to prove this in vivo. The main hurdle is coming from the fact that it is difficult to decipher to what extent clinical benefit is coming from the antimicrobial effect per se and to what extent this is due to modulation of the immune responses. In other terms, an anti-inflammatory effect is better shown in infections caused by pathogens that do not belong to the antimicrobial spectrum of macrolides. Our group has conducted two large scale randomized clinical trials (RCTs) where clarithromycin was co-administered intravenously along with β-lactams in either patients with ventilator-associated pneumonia (VAP) by multidrug-resistant Gram-negative pathogens or patients with severe Gram-negative infections like acute pyelonephritis, intraabdominal infections and primary Gram-negative bacteremia. The total number of patients enrolled in both studies was 800 and isolated pathogens did not belong to the antimicrobial spectrum of macrolides. Addition of clarithromycin provided overall survival benefit after 90-days in patients with VAP (57% survival versus 40% of placebo-treated comparators). Mortality by septic shock after 28-days was also considerably decreased in patients with severe Gram-negative infections (53.1% versus 73.1% of the comparators). Although these findings point towards an anti-inflammatory mode of action of clarithromycin, they do not necessarily imply that a survival benefit similar to Gram-negative infections will apply in CAP. There is only one RCT to test the anti-inflammatory effect of clarithromycin in patients with CAP. This RCT was designed for non-inferiority and randomized patients were allocated into single β-lactam treatment or the combination with oral clarithromycin. The primary endpoint was clinical instability after seven days. Contrary to what investigators were expecting this was shown in 41.2% of non-macrolide treated patients and 33.6% of macrolide-treated patients (p: 0.070). It may be argued that if the study was powered for superiority, the study primary endpoint would have shown benefit from the addition of clarithromycin. In recent publication coming from the research network of the Hellenic Sepsis Study Group (HSSG) 130 patients with CAP were treated with a combination of β-lactam and clarithromycin. They were compared with another 130 patients treated with a combination of β-lactam and azithromycin, with 130 patients treated with respiratory fluoroquinolone monotherapy and with 130 treated with β-lactam monotherapy. The study has a case-matching design and selection of cases of the three comparator groups were based on the group of patients treated with clarithromycin. Matching selection criteria were severity as assessed by the severity score of SOFA (sequential organ failure assessment), APACHE II (acute physiology and chronic health evaluation), PSI and CCI (Charlson's comorbidity index) and type of β-lactam. The 28-day mortality of the four groups was 20.8%, 33.8%, 32.3% and 36.2% respectively, showing a profound survival benefit with the intake of clarithromycin. Based on the above analysis, it seems likely that an RCT that proves the attenuation of the high inflammatory burden of the host with CAP after addition of clarithromycin in the treatment regimen is missing. The need for this RCT is outscored in the recent guidelines of ATS . Such a type of RCT should take into consideration the SOFA score of the patients, the presence of the systemic inflammatory response syndrome (SIRS), the existence of elevated procalcitonin (PCT) in serum and the outcome of patients infected by macrolide-resistant S.pneumoniae. SOFA score is nowadays proposed as the sine qua non for severity. PCT more than 0.25 ng/ml is widely accepted as an index of systemic inflammation in the event of CAP to such an extent that decrease more than 80% or to levels lower than 0.25 ng/ml can be used as an index of therapy withdrawal. In such an RCT rapid resolution of the high inflammatory burden of the host should be highlighted in the achievement of the early treatment response of CAP after 72 hours that is recently appointed by the Food and Drug Administration and the European Medicines Agency as the primary endpoint goal of CAP. This is an RCT that is aiming to prove that addition of oral clarithromycin to a β-lactam rapidly attenuates the high inflammatory burden of the host in CAP.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
QUADRUPLE
Enrollment
278
Oral tablets of similar appearance to active study drug
Oral tablets of 500mg of clarithromycin
4th Department of Internal Medicine, Attikon University Hospital
Athens, Greece
1st Department of Internal Medicine, Amalia Fleming General Hospital
Athens, Greece
1st Department of Internal Medicine, Gennimatas General Hospital
Athens, Greece
1st Department of Internal Medicine, Konstantopouleio-Patission General Hospital
Athens, Greece
1st Department of Internal Medicine, THRIASIO Eleusis General Hospital
Athens, Greece
1st Department of Internal Medicine,Korgialeneio-Benakeio General Hospital
Athens, Greece
2nd Department of Internal Medicine, Attikon University Hospital
Athens, Greece
2nd Department of Internal Medicine, Thriasio General Hospital
Athens, Greece
3rd Department of Internal Medicine, KORGIALENEION-BENAKEION Athens General Hospital
Athens, Greece
3rd Department of Internal Medicine, Sotiria General Hospital
Athens, Greece
...and 8 more locations
Change of baseline respiratory symptoms score
At least 50 percent (%) decrease of the sum of scoring (0-12) for the symptoms of cough (0-3), dyspnea (0-3), purulent sputum expectoration (0-3) and pleuritic chest pain (0-3) between baseline and Study Day 4
Time frame: 4 days
Change of baseline total sequential organ failure assessment (SOFA) score and/or change of baseline serum PCT
At least 30 percent (%) decrease between baseline sequential organ failure assessment (SOFA) score and measured sequential organ failure assessment (SOFA) score at Study Day 4 and/or at least 80 percent (%) decrease of serum PCT from baseline PCT at Study Day 4 and/or serum PCT below 0.25 ng/ml at Study Day 4
Time frame: 4 days
Change of baseline respiratory symptoms score in the subgroup of patients infected or colonized by clarithromycin-susceptible S.pneumoniae
Comparison of the number of patients reaching at least 50 percent (%) decrease of the sum of scoring (0-12) for the symptoms of cough (0-3), dyspnea (0-3), purulent sputum expectoration (0-3) and pleuritic chest pain (0-3) between baseline and Study Day 4, among clarithromycin and placebo-treated patients, infected or colonized by clarithromycin-susceptible S.pneumoniae
Time frame: 4 days
Change of baseline respiratory symptoms score in the subgroup of patients infected or colonized by clarithromycin-resistant S.pneumoniae
Comparison of the number of patients reaching at least 50 percent (%) decrease of the sum of scoring (0-12) for the symptoms of cough (0-3), dyspnea (0-3), purulent sputum expectoration (0-3) and pleuritic chest pain (0-3) between baseline and Study Day 4, among clarithromycin and placebo-treated patients, infected or colonized by clarithromycin-susceptible S.pneumoniae
Time frame: 4 days
Change of baseline total sequential organ failure assessment (SOFA) score and/or change of baseline serum PCT in the subgroup of patients infected or colonized by clarithromycin-susceptible S.pneumoniae
Comparison of the number of patients reaching at least 30 percent (%) decrease between baseline sequential organ failure assessment (SOFA) score and measured sequential organ failure assessment (SOFA) score at Study Day 4 and/or at least 80 percent (%) decrease of serum PCT from baseline at Study Day 4 and/or serum PCT below 0.25 ng/ml at Study Day 4, among clarithromycin and placebo-treated patients infected or colonized by clarithromycin-susceptible S.pneumoniae
Time frame: 4 days
Change of baseline total sequential organ failure assessment (SOFA) score and/or change of baseline serum PCT in the subgroup of patients infected or colonized by clarithromycin-resistant S.pneumoniae
Comparison of the number of patients reaching at least 30 percent (%) decrease between baseline sequential organ failure assessment (SOFA) score and measured sequential organ failure assessment (SOFA) score at Study Day 4 and/or at least 80 percent (%) decrease of serum PCT from baseline at Study Day 4 and/or serum PCT below 0.25 ng/ml at Study Day 4, among clarithromycin and placebo-treated patients infected or colonized by clarithromycin-resistant S.pneumoniae
Time frame: 4 days
Mortality rate at 28 days
Differences in 28-day all-cause mortality rate between clarithromycin and placebo-treated arms
Time frame: 28 days
Mortality rate at 90 days
Differences in 90-day all-cause mortality rate between clarithromycin and placebo-treated arms
Time frame: 90 days
Clinical success at the end of treatment Visit (day 8)
Difference in clinical success rate at day 8, as defined by at least 50 percent (%) decrease of the baseline sum of scoring (0-12) for the symptoms of cough (0-3), dyspnea (0-3), purulent sputum expectoration (0-3) and pleuritic chest pain (0-3)
Time frame: 8 days
Hospital discharge until day 90
Comparison of length of hospital stay (days) until day 90 between clarithromycin and placebo-treated arms
Time frame: 90 days
Hospital readmission until day 90
Comparison of hospital readmission rate until day 90 between clarithromycin and placebo-treated arms
Time frame: 90 days
Change of baseline total sequential organ failure assessment (SOFA) score at the end of treatment Visit (day 8)
Comparison of number of patients reaching more than 50 percent (%) decrease between baseline sequential organ failure assessment (SOFA) score and measured sequential organ failure assessment (SOFA) score at Study Day 8 between clarithromycin and placebo-treated arms
Time frame: 8 days
Development of new organ dysfunctions until day 90
Comparison of the rate of development of new organ dysfunctions between clarithromycin and placebo-treated arms
Time frame: 90 days
Change of function of monocytes, Th1, Th2 and T17 cells at Study Visit 4
Comparison of cytokine production by stimulation of monocytes, Th1,Th2 and T17 cells between clarithromycin and placebo-treated arms
Time frame: 4 days
Change of gene expression of anti-inflammatory genes at Study Visit 4
Comparison of the expressions of four genes (FGL-2, IL7R, HLA-DPA1, CPVL), that are down-regulated upon development of severe infections, between clarithromycin and placebo-treated arms
Time frame: 4 days
Anti-inflammatory PCT change at study Visit 6
Comparison of number of patients reaching at least 80 percent (%) decrease of serum PCT from baseline on day 6 or any value of PCT below 0.25 ng/ml on day 6 between clarithromycin and placebo-treated arms
Time frame: 6 days
Anti-inflammatory PCT change at the end of treatment Visit (day 8)
Comparison of number of patients reaching at least 80 percent (%) decrease of serum PCT from baseline on day 8 or any value of PCT below 0.25 ng/ml on day 8 between clarithromycin and placebo-treated arms
Time frame: 8 days
Change of the IL-10/TNFα ratio at study Visit 6
Comparison of the change of the IL-10/TNFα ratio between baseline and day 6 among clarithromycin and placebo-treated arms
Time frame: 6 days
Change of the IL-10/TNFα ratio at the end of treatment Visit (day 8)
Comparison of the of the change of the IL-10/TNFα ratio between baseline and day 8 among clarithromycin and placebo-treated arms
Time frame: 8 days
New sepsis episode until day 90
Comparison of the rate of development of new sepsis episode between clarithromycin and placebo-treated arms
Time frame: 90 days
Change of expression of the MVK gene at study Visit 4
Comparison of the expression of the MVK gene, that affects the cholesterol homeostasis pathway, between clarithromycin and placebo-treated arms
Time frame: 4 days
Change of expression of the SC5D gene at study Visit 4
Comparison of the expression of the SC5D gene, that affects the cholesterol homeostasis pathway, between clarithromycin and placebo-treated arms
Time frame: 4 days
Change of expression of the MVD gene at study Visit 4
Comparison of the expression of the MVD gene, that affects the cholesterol homeostasis pathway, between clarithromycin and placebo-treated arms
Time frame: 4 days
Change of expression of the STARD4 gene at study Visit 4
Comparison of the expression of the STARD4 gene, that affects the cholesterol homeostasis pathway, between clarithromycin and placebo-treated arms
Time frame: 4 days
Change of expression of the SQLE gene at study Visit 4
Comparison of the expression of the SQLE gene, that affects the cholesterol homeostasis pathway, between clarithromycin and placebo-treated arms
Time frame: 4 days
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.