Demonstrating the pathophysiological link between Left Atrial (LA) and Left Atrial Appendage (LAA) pathology and embolic strokes in non-Atrial Fibrillation (AF) individuals represents a major advance in stroke prevention strategies. Instead of relying on non-specific criteria for stroke risk assessment, the investigators propose to identify individuals with high-risk of embolic stroke using imaging criteria that reflect the underlying pathophysiology of embolic stroke of cardiac origin. the investigators can therefore lay the groundwork for future anticoagulation strategies for stroke prevention beyond AF.
The investigators propose a cross-sectional cohort study, where individuals with no history of AF and with a Congestive heart failure, Hypertension, Age ≥ 75 years, Diabetes mellitus, Stroke or transient ischemic attack (TIA), Vascular disease, Age 65 to 74 years, Sex category score (CHA2DS2VASC) ≥3, type II diabetes, congestive heart failure or a history of stroke/TIA will be included. Data on demographics, personal health habits, medications, and medical history will be obtained by interviewing participants and reviewing the electronic medical records. All participants will undergo a Cardiac Magnetic Resonance imaging (CMR) to assess for markers of LA and LAA pathology. Markers of LA and LAA pathology that will be studied include: LA fibrosis level, LA functional parameters, LA shape characteristics, and LAA characteristics (including morphology, orifice area and flow velocity). Additionally, all participants will undergo a brain Magnetic Resonance Imaging (MRI) at the same visit to assess for the presence of embolic-appearing brain infarcts, regardless of previous stroke-related symptoms. The investigators will analyze the association between each cardiac imaging feature and the prevalence of embolic-appearing strokes on brain MRI to determine whether patients with higher LA and LAA remodeled features are more likely to have embolic-appearing brain infarcts on MRI. The LA and LAA pathology imaging features with the strongest statistical association will be used to develop an imaging predictive score capable of identifying patients with the highest risk of embolic stroke. All brain and cardiac imaging data will be assessed by experienced operators at Tulane Medical Center facilities. Operators analyzing CMR will be blinded to brain MRI results, and operators assessing brain MRI will be blinded to CMR results. The study will include a single center study at Tulane Medical Center and Clinics, with investigators from different medical specialties, and the proper facilities and equipment to conduct the project accurately and safely. The investigators expect a recruitment of 120 subjects over a period of 18 months from both cardiology and neurology clinics to complete the study.
Study Type
INTERVENTIONAL
Allocation
NA
Purpose
DIAGNOSTIC
Masking
NONE
Enrollment
120
A CMR to evaluate for LA and LAA high-risk features on either a 1.5 or 3 Tesla clinical MR scanner will be used. Gadolinium injection will be administered. Gadolinium is a contrast product that helps define areas of fibrosis in the LA. High-resolution brain MRI with no contrast will include the following sequences for most accurate assessment of embolic lesions: 3D T1 MPRAGE, 3D FLAIR, DWI, ADC, and SWI
Tulane University Medical Center
New Orleans, Louisiana, United States
RECRUITINGThe presence of covert embolic cerebral infarcts
The covert embolic cerebral infarcts are defined as the presence of asymptomatic non-lacunar embolic infarct (acute or chronic based on MRI appearance), in the cortex, and juxtacortical regions, and cerebellum. They will be identified using brain MRI.
Time frame: Day1
Number of counts of lacunar covert infracts
Covert lacunar infarcts are asymptomatic infarct \< 15mm in greatest diameter in subcortical brain regions. They will be identified by size and location using brain MRI images.
Time frame: Day1
Number of counts of lacunar symptomatic infracts
Symptomatic lacunar infarcts are symptomatic infarct \< 15mm in greatest diameter in subcortical brain regions. They will be identified by size and location using brain MRI images.
Time frame: Day1
Number of counts of embolic symptomatic infracts
Symptomatic non-lacunar embolic infarcts are symptomatic infarcts of any size in the cortex or infarcts \>15 mm in greatest diameter in subcortical lesions. They will be identified by size and location using brain MRI images.
Time frame: Day1
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.