In Parkinson's disease (PD), recent work has shown that dopaminergic treatments alter one of the two aspects of impulsivity: they do not alter the propensity to produce "automatic" responses, but deteriorate the ability to inhibit and correct (that is, control) them. In healthy subjects, the investigator's team has also demonstrated that transcranial direct current "cathodal" electrical stimulation (tDCS) of Supplementary Motor Areas decreases the frequency of behavioral errors by improving the ability to "correct" responses. The main objective of this project is to determine whether cathodal tDCS of Supplementary Motor Areas in PD patients under dopaminergic treatment improves the control and correction of errors about to be made and compensates for the deficits induced by the treatment. All participants will perform a reaction time task of choice (Simon's task), with and without ("sham" session) tDCS. The experimental design of this single-center, single-blind, randomized study will be that of 3 parallel groups (treated Parkinson's disease, untreated Parkinson's disease patient, and matched control subjects) with cross-over application of tDCS. All participants will be blind to the operating mode of the tDCS (either functional or in "sham" mode corresponding to a control condition). The order of the sessions (with and without tDCS) will be randomized within each of the 3 groups of subjects. The analysis of errors about to be made but inhibited in time (known as "early errors") will be carried out through electromyographic (surface) recording of muscle activities involved in motor responses. tDCS is expected to improve the ability of treated patients to correct their errors about to be made. This study will thus provide a better understanding of the mechanisms of action control and possibly propose a new therapeutic approach for treatment-induced impulsivity disorders in Parkinson's disease.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
DOUBLE
Enrollment
67
Simon's task assessment when under tDCS
Service Neurologie et pathologies du mouvement
Marseille, France
Rapid error rate.
Responses recorded on the opposite side to that expected
Time frame: Day 2
Rapid error rate.
Responses recorded on the opposite side to that expected
Time frame: Day 3
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.