Comparison of high-resolution optical coherence tomography (High-Res-OCT) to conventional imaging modalities for the diagnosis of eye diseases
The high resolution optical coherence tomography (High-Res-OCT) is an improvement of a non-invasive routinely used imaging technique, the optical coherence tomography (OCT), with a light-source capable of providing an increased axial resolution. The routinely used Spectral-Domain OCT has a center wavelength of 880 nm and a spectral bandwidth of 40 nm, resulting in an axial resolution of approximately 7 μm in the eye and is used routinely worldwide. The High-Res OCT works with a central wavelength of 840 nm and an increased bandwidth of 130 nm, making it possible to improve the optical axial resolution in tissue from 7 to 3 µm, without increasing the maximum laser exposure limit. The improved axial resolution of the High-Res OCT results in clearer and more detailed images. The technique is routinely used in clinical practice and the device used for High-Res-OCT (Heidelberg, SPECTRALIS® High-Res OCT- DMR001) has received CE mark (european conformity in the extended Single Market in the European Economic Area) approval in March 2021. We plan to compare High-Res-OCT as an imaging modality to conventional imaging modalities used in clinical routine, such as the Spectral-Domain-OCT (SD-OCT)
Study Type
OBSERVATIONAL
Enrollment
550
Imaging with high-resolution optical coherence tomography
Imaging with standard spectral domain OCT
Department of Ophthalmology, Bern University Hospital, Bern, 3010 Bern, Switzerland
Bern, Canton of Bern, Switzerland
RECRUITINGEvaluation of the sensitivity and specificity of High-Res-OCT for retinal fluid
The primary objective of this observational study is to evaluate the sensitivity and specificity to diagnose retinal morphological abnormalities with High-Resolution OCT compared to conventional imaging method (SD-OCT). The main parameter that will be assessed is the presence/absence of retinal fluid. The incidence (binary) of retinal fluid will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT)
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for atrophy area
The incidence (binary) of atrophy area, defined as hypertransmission due to loss of outer retinal layers within the choroidea, will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT)
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for epiretinal membrane
The incidence (binary) of epiretinal membrane (defined as thickening of the retinal nerve fiber layer) will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT)
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for drusen
The incidence (binary) of drusen will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Drusen are defined as hyperfluorescent deposits between the RPE and Bruch's membrane (BM). May be "hard" (small hyperreflective deposits in the retina) and "soft" (larger with indistinct edges).
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for ischemia
The incidence (binary) of ischemia will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Ischemia is defined as hyperreflective band located within/above the outer plexiform layer.
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for neovascularisation
The incidence (binary) of neovascularisation will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Neovascularisation is defined as abnormal growth of vessels from the choroid to the retina through the BM.
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for optic disc swelling
The incidence (binary) of optic disc swelling will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Optic disc swelling is defined as an elevation of the whole nerve head, measured as follows: max. horizontal extent in micrometer of the RNFL (3 mm diameter peripapillary).
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for hyperreflective foci
The incidence (binary) of hyperreflective foci will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Hyperreflective foci are defined as intraretinal hyperreflective dots.
Time frame: 2 years
Evaluation of the sensitivity and specificity of High-Res-OCT for scars
The incidence (binary) of scars will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Scars are defined as hyperreflective fibrous tissue, which obscures RPE and choroid.
Time frame: 2 years
Evaluation of the inter-reader reproducibility
Evaluation of the inter-reader reproducibility of the diagnosis of retinal diseases with High-Res-OCT. Inter-reader reproducibility will be estimated using the Bland-Altman method and the coefficient of repeatability (CoR).
Time frame: 2 years
Subgroup analysis
Subgroup analysis will be performed with patients suffering from diabetic retinopathy, artery and vein occlusion, retinal detachment, glaucoma, optic nerve neuropathy, hereditary retinal diseases, age related macular degeneration, retinal changes from arterial hypertension and uveitis. For this purpose, the presence/absence of each above-mentioned morphological abnormality will be assessed/measured in each subgroup and compared with the standard OCT.
Time frame: 2 years
Evaluation of the segmentation quality of the retinal layers using High-Res-OCT
For this purpose the discrimination capacity between the different retinal layers will be assessed, i.e. internal limiting membrane, retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, external limiting membrane, photoreceptor layers, retinal pigment epithelium, Bruch's membrane, choriocapillaris, choroidal stroma. For this purpose, a binary outcome will also result, which means that the ability to discriminate between the above-mentioned adjacent layers will be indicated by yes/no.
Time frame: 2 years
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.