COVID-19 is a disease that has multiple facets including an inflammatory storm, it promotes blood clotting and causes kidney damage, mucinous secretions in the lung are of great importance to outcome. Increasingly sticky sputum is associated with critical illness, with considerably raised levels of a specific type of mucous protein (MUC5AC) in sputum in COVID-19 patients. There is a strong link between viral infection and mucus production via multiple inter-cellular signalling pathways including Interleukin (IL)6, IL10 and Tumour Necrosis Factor (TNF) whereby the inflammatory storm causes sudden secretion of high volumes of dense mucus. An Australian pharmaceutical company has developed BromAc (Bromelain \& Acetylcysteine) for the palliative treatment of highly mucinous tumors of the appendix and lung. During pre-clinical development, they found that BromAc® rapidly dissolved and removed tumour mucin, making it a potent mucolytic. In combination, bromelain and acetylcysteine disrupt the architecture of the SARS-COV-2 virus in a way that renders it non-infective, reduced cytokines and chemokines in COVID-19 sputum and is a highly effective respiratory mucolytic. The aim of this study is to assess whether BromAc delivered into the respiratory tract as a nebulised aerosol is tolerated and safe at three specific concentrations in healthy volunteer participants. The investigators will further assess the safety of nebulised BromAc and efficacy of the drug product as a mucolytic and anti-inflammatory, and whether this improves clinical outcome in participants with COVID-19. The hypothesis is that BromAc will be tolerated by patients and will result in mucus clearance, improving oxygenation and compliance in those that are ventilated. This is a phase I study on the safety of BromAc, where 12 healthy volunteers will receive BromAc as a nebulised aerosol into the respiratory tract. BromAc is a product that combines two existing products to be delivered into the respiratory tract via nebulised aerosol delivery through a mask. The participant will be assessed for symptoms and side effects. The participant will receive nebulised BromAc at the allocated dose level for a total of 3 days. The hypothesis is that nebulised airway delivery of BromAc will be safe at the concentrations assessed.
The SARS-CoV-2 virus, with its clinical syndrome known as COVID-19, has a spike protein (S), nucleocapsid protein (N) that contains the RNA, membrane protein (M) and the envelope protein (E). The spike protein is responsible for initiating internalisation of the virus genome into human lung cells via ACE2 receptors in the nasopharyngeal and lung tissue, it protrudes on the outer surface and is made up of number of amino acids and glycoproteins. The integrity of the proteins (S, N, M \& E) is vital for viral functions, and formation of disulfide bonds between these have been suggested to play a vital role in the performance of the protein. The cleavage site after binding has been reported to split the spike glycoprotein, which is then reported to be supported with disulphide bonds. Binding then triggers proteolysis processed by transmembrane protease, serine 2 (TMPRSS2), furin, and perhaps other proteases, leading to fusion of viral and cellular membranes and thus target cells penetration. Hijacking of the cellular machinery then allows viral multiplication. COVID-19 is a disease that has multiple facets including cytokine storm, thromboembolism and renal impairment, but the investigators believe mucinous secretions in the lung are of great importance to outcome. Early reports of lung pathology included cellular fibromyxoid exudate, proteinaceous exudate, massive luminal fibrous exudate and severe mucoid tracheal bronchitis. Autopsies in a cohort of fatal cases from northern Italy showed 'lumina often contained dense mucoid material. There are many pathological changes in the lungs, and these evolve over time. Early disease is characterised by neutrophilic exudative capillaritis with thrombosis. Late changes occurring on average from day 10 include diffuse alveolar damage, intravascular thrombosis, infection, disseminated intravascular coagulopathy (DIC) and later intra-alveolar fibroblast proliferation. Bronchoscopy was performed for acute hypoxia due to lung collapse in a COVID-19 patient, revealing a thick mucus plug. Multiple other reports of similar findings in bronchoscopies have been described where mucolytic therapy and suctioning have been advocated. Sputum characteristics in patients with severe COVID-19 correlate with outcome. Increasingly sticky sputum was associated with critical illness and considerably raised levels of MUC5AC in sputum in COVID-19 patients. There is a strong link between viral infection and mucus production via multiple signalling pathways including Interleukin (IL)6, IL10 and Tumour Necrosis Factor (TNF) whereby the cytokine storm causes sudden mucus hypersecretion. Currently, there are few therapeutic agents of limited efficacy to treat or avoid the complications of COVID-19. An Australian pharmaceutical company has developed BromAc for the palliative treatment of highly mucinous tumors of the appendix and lung. This drug is composed of bromelain and acetylcysteine. During pre-clinical development, the sponsor found that BromAc® rapidly dissolved and removed tumour mucin, making it a potent mucolytic. BromAc® in combination have the ability, as shown in pre-clinical studies, to remove the mucin protective framework expressed by cancer including mucins MUC1, MUC2, MUC4, MUC5AC and MUC16. The sponsor has that BromAc breaks peptide and glycosidic linkages and disulphide bonds in tumour produced and respiratory mucin. It also combines synergistically with a variety of anticancer and antibacterial drugs. In an in vitro study with Vero and CALU-3 cells infected by SARS-CoV-2 (MOI 1 to -4) and treated with BromAc, it was found that the drug was able to reduce the virus' ability to infect cells, demonstrating an antiviral potential against SARS-CoV-2. In addition to the anti-viral effect, BromAc is a potent mucolytic. In laboratory studies conducted in Brazil, BromAc (125ug or 250ug/ml plus 20mg/ml Acetylcysteine) resulted in complete dissolution of severe COVID-19 sputum within 30 minutes. BromAc was also shown to significantly down-regulate cytokines and chemokines in comparison to Acetylcysteine alone or control, specifically those important to COVID-19 cytokine storm CCL2, CCL3, IL-6, CXCL10. In vitro safety models have received nebulised and intranasal BromAc up to 500ug/20mg/ml three times daily for five days, with no evidence of toxicity. In oncology, BromAc interferes with the effect of mucin, reduces cancer cell viability and profoundly enhances the effects of certain chemotherapy agents. MUC1, MUC2 and MUC5AC are highly expressed in gastrointestinal tumours. In brief, when investigating the effects of BromAc treatment on specific mucin isoforms in gastrointestinal carcinoma cells, the sponsor observed a significant decrease in the expression of MUC2 and MUC5AC in gastrointestinal LS174T cell lines. MUC1 and MUC5 are overexpressed and aberrantly glycosylated in most carcinomas, exploited by malignant cells to induce transformation and tumorigenicity. The sponsor's team have performed dose escalation animal safety studies with repeat injection in three different animal species into the peritoneum with doses of Bromelain up to 10mg/kg and Acetylcysteine 500mg/kg. There was no toxicity seen. BromAc was shown to remove mucin from the a range of human tumours in vivo, while none of the drugs worked alone. BromAc has the ability, as demonstrated in preclinical studies, to remove the protective structure of mucin expressed by cancer, including MUC1, MUC2, MUC4, MUC5B, MUC5AC and MUC16. BromAc's mechanism of action in removing peptide and glycoside bonds and disulfide bonds in mucin has also been shown. In addition, secondary infection in patients with COVID-19 might also be prevented or treated because of the effect of BromAc on biofilm. The sponsor has described efficacy in used endotracheal tubes at dissolving biofilm via nebulisation of BromAc, in addition to extensive laboratory work on pseudomonas aeruginosa and staphylococcus aureus established biofilms. It is known that oxygen exchange is the main problem in patients with COVID-19 and hypoxia is one of the most serious effects, in which patients succumb to acute respiratory distress syndrome (ARDS). The development of mucinous sputum plugs in individuals infected with SARS-CoV-2 is variable in the early stages of the disease. In addition, 30-40% of patients who are in hospital have expectoration production, and in a recent study on pulmonary pathology in patients with COVID-19, subsequent tests revealed markedly increased levels of MUC1 and MUC5AC in sputum and trachea aspirate. This study aims to examine the safety and efficacy of nebulised BromAc in a dose escalation phase I component. A phase I study applying the safe and effective dose in patients with moderate to severe COVID-19 will also be conducted. The primary endpoint in the phase I studies is the safety and tolerability of the planned doses. The hypothesis is that BromAc will be tolerated by patients and will result in mucus clearance, improving oxygenation and compliance in those that are ventilated. This is a phase I study on the safety of BromAc, where 12 healthy volunteers who are otherwise well and remain in the outpatient setting will receive BromAc as a nebulised aerosol into the respiratory tract. BromAc is a product that combines two existing products (Bromelain and Acetylcysteine), along with 0.9% normal saline to be delivered into the respiratory tract via nebulised aerosol delivery through a mask. The participant will be assessed for symptoms and side effects.
Study Type
INTERVENTIONAL
Allocation
NON_RANDOMIZED
Purpose
TREATMENT
Masking
NONE
Enrollment
12
Bromelain and acetylcysteine are combined in various concentrations (either 100ug, 150ug or 200ug of bromelain, with 20mg of acetylcysteine). This is then delivered by a nebuliser to up to 12 healthy volunteers. The primary aim is determining safety.
St George Hospital
Kogarah, New South Wales, Australia
To characterise and evaluate the safety of BromAc following nebulised delivery
Clinical observations will be performed to to assess change compared to baseline in heart rate (HR) (beats per minute).
Time frame: Heart rate will be measured every 10 minutes during nebulisation, then 30 minutes after cessation of treatment and again at 1 hour and 2 hours.
To characterise and evaluate the safety of BromAc following nebulised delivery
Clinical observations will be performed to assess change compared to baseline in blood pressure (BP) (mmHg)
Time frame: Blood pressure will be measured every 10 minutes during nebulisation, then 30 minutes after cessation of treatment and again at 1 hour and 2 hours.
To characterise and evaluate the safety of BromAc following nebulised delivery on oxygen saturation
Clinical observations will be performed to assess change compared to baseline in SpO2 (oxygen saturation) to determine SpO2 to FiO2 (fraction of inspired oxygen) ratio.
Time frame: SpO2 will be measured every 10 minutes during nebulisation, then 30 minutes after cessation of treatment, and again at 1 hour and 2 hours.
To characterise and evaluate the safety of BromAc following nebulised delivery on respiratory rate
Clinical observations will be performed to assess change compared to baseline in respiratory rate (RR) (breaths per minute)
Time frame: Respiratory rate will be measured every 10 minutes during nebulisation, then 30 minutes after cessation of treatment, and again at 1 hour and 2 hours.
To characterise and evaluate the safety of BromAc following nebulised delivery on mucosal parameters
Mucosal assessment will be performed by the Total Nasal Symptom Score to determine any changes in mucosal parameters vs baseline. A higher score will mean a worse outcome in terms of nasal mucosal side effect to treatment.
Time frame: Baseline each treatment day and at the end of each nebulisation on days 1-3.
To characterise and evaluate the safety of BromAc following nebulised delivery on blood parameters
Biochemical analyses liver and kidney function, full blood count, coagulation and inflammatory markers will be measured and compared to baseline pretreatment results to determine if there is any change to the baseline biochemical parameters of the drug treatment.
Time frame: Blood tests will be performed at baseline (day 0), then each day of treatment (days 1-5), during follow up on day 6 and day 14.
Determine the proportion of patients with treatment-emergent adverse events (AEs)
Any adverse drug effects (ADE) using the FDA safety guidance for healthy volunteer criteria including nausea/vomiting, diarrhoea, fatigue, myalgia, headache, or any other bodily discomfort.
Time frame: Adverse events will be monitored during and immediately post-treatment on days 1, 2 and 3; and for delayed adverse events on days 4, 5 and 10 and 14.
Determine the maximum tolerated dose (MTD) of BromAc within he therapeutic range for COVID-19 delivered by nebuliser
At each dose level (100ug, 150ug and 200ug bromelain), safety/toxicity will be monitored and progression onto the next level will be decided pending an appropriate safety profile
Time frame: At each dose escalation and up until the end of follow up (last day of follow up for the last patient enrolled).
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.