Recent ground-breaking research has shown that clearance of toxic neuro-metabolites from the brain including the proteins β-Amyloid (Aβ) and tau that form dementia causing plaques and tangles is markedly impaired when sleep is disturbed. This suggests that dementia risk may be increased in people with sleep disorders such as obstructive sleep apnea (OSA). Longitudinal studies have linked OSA with a 70-85% increased risk for mild cognitive impairment and dementia. Despite this strong link, little is known about the OSA-specific mechanistic underpinnings. It is not fully understood as to how sleep disturbance in OSA inhibit brain glymphatic clearance. However, it is known that OSA inhibits slow wave sleep, profoundly activates sympathetic activity, and elevates blood pressure - particularly during sleep. These disturbances have, in turn, been shown to independently inhibit glymphatic function. Previous studies have attempted to sample human cerebrospinal fluid (CSF) involved in glymphatic clearance for dementia biomarkers during sleep. However, these studies were severely limited by the need for invasive CSF sampling. To address this problem, a set of newly available, highly sensitive blood based SIMOA assays will be used to study glymphatic function in people treated for severe OSA who undergo CPAP withdrawal. Furthermore, novel methods will be utilized to capture changes in slow wave sleep, blood pressure and brain blood flow together with sleep-wake changes in blood levels of excreted neuro-metabolites to define the pathophysiological mechanisms that inhibit brain cleaning in OSA.
Dementia is a neurodegenerative disease characterized by cognitive dysfunction affecting aspects of memory and learning. Although the mechanisms that underlie the pathophysiology of dementia are still unclear, in the past decade there has been a focus on the adverse impact of sleep disturbance on brain waste disposal via the glymphatic system. The glymphatic system is a recently discovered brain-wide perivascular passageway that transports toxic neuro-metabolites (e.g.: amyloid beta, or Aβ) out of the brain to the blood via the cerebrospinal fluid. Newer research has shown that the glymphatic system becomes particularly active during sleep, clearing metabolites twice as fast compared with wakefulness. Obstructive sleep apnea (OSA), a sleep disorder characterized by periods of intermittent hypoxia and sleep fragmentation due to obstructed breathing, has traditionally been causatively linked to the development of hypertension and cognitive dysfunction. Further to this, recent epidemiological studies have also linked OSA to an increased risk for both dementia and its prodromal state - mild cognitive impairment. There is emerging evidence to suggest that OSA might chronically impair glymphatic clearance of Aβ42 from the brain and facilitate the formation of Aβ plaques that characterize Alzheimer's Disease. Recent ground-breaking research has shown that clearance of toxic neuro-metabolites from the brain including the proteins Aβ and tau that form dementia causing plaques and tangles is markedly impaired when sleep is disturbed. This suggests that dementia risk may be increased in people with sleep disorders such as OSA. Longitudinal studies have linked OSA with a 70-85% increased risk for mild cognitive impairment and dementia. Despite this strong link, little is known about the OSA-specific mechanistic underpinnings. It is not fully understood as to how sleep disturbance in OSA inhibit brain glymphatic clearance. However, it is known that OSA inhibits slow wave sleep, profoundly activates sympathetic activity, and elevates blood pressure - particularly during sleep. These disturbances have, in turn, been shown to independently inhibit glymphatic function. Previous studies have attempted to sample human cerebrospinal fluid (CSF) involved in glymphatic clearance for dementia biomarkers during sleep. However, these studies were severely limited by the need for invasive CSF sampling. To address this problem, this proposed study will use a set of newly available, highly sensitive blood based SIMOA assays to study glymphatic function in people treated for severe OSA who undergo CPAP withdrawal. Furthermore, novel methods will be utilized to capture changes in slow wave sleep, blood pressure and brain blood flow together with sleep-wake changes in blood levels of excreted neuro-metabolites to define the pathophysiological mechanisms that inhibit brain cleaning in OSA.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
OTHER
Masking
NONE
Enrollment
38
Complete withdrawal of continuous positive airway pressure (CPAP) therapy for a 2-week period.
Woolcock Institute of Medical Research
Macquarie Park, New South Wales, Australia
Changes in sleep-wake amplitudes (peak-trough) of blood levels of Aβ
Difference between the CPAP on and CPAP off conditions in sleep-wake amplitudes (peak-trough) of blood levels of Aβ (Aβ40/Aβ42 ratio), as measured by SIMOA blood neuro-metabolite assays.
Time frame: Pre- and 2 weeks post-intervention
Changes in NREM slow wave parietal cortex activity
Differences between the CPAP on and CPAP off conditions in NREM slow wave parietal cortex activity as measured by high-density EEG (HD-EEG).
Time frame: Pre- and 2 weeks post-intervention
Changes in brain tissue oxygenation during sleep
Differences between the CPAP on and CPAP off conditions in brain tissue oxygenation, as measured by oxygenated and deoxygenated hemoglobin using functional Near Infrared Spectroscopy (fNIRS).
Time frame: Pre- and 2 weeks post-intervention
Changes in brain blood volume during sleep
Differences between the CPAP on and CPAP off conditions in brain blood volume during sleep, estimated by changes in total hemoglobin using functional Near Infrared Spectroscopy (fNIRS).
Time frame: Pre- and 2 weeks post-intervention
Changes in sympathetic and parasympathetic activity during wake and sleep periods
Differences between the CPAP on and CPAP off conditions in sympathetic and parasympathetic activity during wake and sleep periods, as measured by heart rate variability (HRV) analysis of electrocardiogram (ECG) readings.
Time frame: Pre- and 2 weeks post-intervention
Changes in sleep-wake amplitudes (peak-trough) of blood levels of p-tau-217
Difference between the CPAP on and CPAP off conditions in sleep-wake amplitudes (peak-trough) of blood levels of p-tau-217, as measured by SIMOA blood neuro-metabolite assays.
Time frame: Pre- and 2 weeks post-intervention
Changes in sleep-wake amplitudes (peak-trough) of blood levels of glial fibrillary acidic protein (GFAP)
Difference between the CPAP on and CPAP off conditions in sleep-wake amplitudes (peak-trough) of blood levels of GFAP, as measured by SIMOA blood neuro-metabolite assays.
Time frame: Pre- and 2 weeks post-intervention
Changes in sleep-wake amplitudes (peak-trough) of blood levels of neurofilament light chain (NfL)
Difference between the CPAP on and CPAP off conditions in sleep-wake amplitudes (peak-trough) of blood levels of NfL, as measured by SIMOA blood neuro-metabolite assays.
Time frame: Pre- and 2 weeks post-intervention
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.