Many people with partial damages in their spinal cord (iSCI) have physical impairments such as muscle paralysis in legs which make standing balance difficult. Poor balance control often leads to falls, injuries, and hospitalization. Therefore, improvement of standing balance is an important therapeutic goal for these individuals. Our team has shown that a therapy called visual feedback training (VFT) can improve standing balance by allowing individuals with iSCI to actively participate and follow visual feedback of their body sway on a screen like a computer game. We have also found that the application of low-energy electrical pulses to weak muscles called functional electrical stimulation (FES) during VFT can enhance the training effects. Recently, transcutaneous spinal cord stimulation (TSCS) has been discussed as a promising technique to further promote the rehabilitation effects after SCI by enhancing the connectivity between the brain and spinal cord and within the spinal pathways. However, to date, the potential of combining the two techniques (TSCS+FES) to improve the standing balance remains unknown. In this study, through the completion of a clinical trial, we will investigate the effects of an intervention that combines lumbar TSCS with FES of ankle muscles during VFT on the functional and neurophysiological outcomes in individuals living with iSCI. Participants will be randomly allocated to receive combined TSCS with FES or FES alone during VFT for 12 training sessions over 4 weeks. We expect that the new therapy would further improve balance and strengthen the neural connections between the brain and muscles. The expected changes in the neural connections will be measured by recording electrical signals from the lower limb muscles following stimulation of the motor region of the brain. Results of this study will be used for a larger-scale study in people with iSCI to improve balance and reduce falls during their daily life activities.
This is a single-center, randomized controlled trial to test the effects of a novel neuromodulation program on balance performance and neuroplasticity in individuals with iSCI. Participants will be randomly assigned to 2 equal groups labeled as (1) FES with VFT, and (2) combined neuromodulation with VFT. They will complete 8 training sessions over 4 weeks (2 sessions/week). For the FES with VFT group, participants will receive visual feedback regarding their center of pressure location during four games with varying levels of difficulty and FES will be applied bilaterally to SOL and TA via a closed-loop system. Each exercise will be completed 3 times per training session. For the combined neuromodulation with VFT group, the sub-motor threshold, open-loop TSCS will be coupled with closed-loop FES of ankle muscles during VFT. For this purpose, 2 electrical stimulators, one for each leg will stimulate SOL and TA muscles bilaterally while open-loop tonic lumbar TSCS will be applied at an intensity producing paresthesia in most of the lower-limb dermatomes. The range of FES stimulation intensity will vary between the minimal contraction threshold and 80% of the maximal tolerable threshold for each participant during games depending on the instant location of the participant's center of pressure and the location of the desired target during the game. All dependent variables will be assessed prior, immediately after, and 6-weeks after the end of intervention.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
DOUBLE
Enrollment
20
Balance training will occur three times per week for four weeks, totaling 12 two-hour sessions. In both groups, you will be asked to stand on a force plate while playing visual feedback training (VFT) games as part of the standing balance training. A force plate is similar to a bathroom scale that you can stand on which measures your body sway during movement. Visual feedback training (VFT) is a type of activity that includes weight-shifting movements in the upright stance. VFT will be done in both groups. There will be different games as shown in figure 1 and the order of the games will be randomly chosen in each session. During each game, there will be targets that will be presented on the screen and you will have to navigate toward them . You will be able to rest between games as needed.
Toronto Rehabilitation Institute-Lyndhurst Center
Toronto, Ontario, Canada
Mini-Balance Evaluation Systems Test (mini-BESTest)
evaluates different components of postural control including anticipatory, reactive postural control, sensory orientation, and dynamic gait. It has high test-retest reliability, concurrent and convergent validity in individuals with iSCI.
Time frame: pre- immidiately post- 6 weeks follow up
10-meter Walk Test (10MWT)
performance-based measure to assess mobility and walking speed over a short distance.
Time frame: pre- immidiately post- 6 weeks follow up
Motor evoked potentials (MEP)
To measure neuroplasticity, we will record changes in the MEPs for the SOL and TA induced by TMS over the leg representation of the motor cortex
Time frame: pre- immidiately post- 6 weeks follow up
Activities-specific Balance Confidence (ABC) Scale
self-reported questionnaire that evaluates balance confidence while performing 16 different mobility tasks such as walking around the house, sweeping the floor, climbing up and down the stairs, walking on a ramp and negotiating escalators
Time frame: pre- immidiately post- 6 weeks follow up
Falls Efficacy Scale - International (FES-I)
16-item self-reported questionnaire that measures fear of falling during basic and demanding daily life activities
Time frame: pre- immidiately post- 6 weeks follow up
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.