Chronic kidney disease (CKD) is a common disease affecting 10-12% of the adult population and characterize with high-risk cardiovascular morbidity and mortality with progression of CKD. Treatment with sodium-glucose cotransporter 2 inhibitors (iSGLT2) not only improves hyperglycemia and type 2 diabetes (T2D) but also results in body-weight loss, a reduction in blood pressure, and a decrease of cardiovascular events and progression of renal failure in both diabetes and non-diabetes patients.(Heerspink et al. 2020) Therefore, dapagliflozin is now associated with the inhibitors of the renin-angiotensin system to reduce kidney events. However, the mechanisms underlying the effects of dapagliflozin on the renal function remain unclear. When renal failure occurs, it impairs the removal of several metabolites called uremic retention solutes. If these retention solutes exhibit deleterious interferences with biochemical/physiological functions, they are referred to as uremic toxins as they can contribute to the manifestations of the uremic syndrome and are associated with a high cardiovascular morbidity and mortality and with progression of CKD. Many of the uremic toxins are not produced by the body itself but rather derived from gut microbiota metabolism such as the well-known trimethylamine-N-oxide (TMAO),p-cresyl sulfate (PCS), phenyl sulfate (PS), indoxyl sulfate (IS), and indole-3-acetic acid (IAA).The gut microbiota composition in a uremic context has been the subject of an increasing number of publications and majority of them confirm a decrease of gut microbiota richness and deep modifications.Recently, an animal study suggested that dapagliflozin, subtly improve the composition of the gut microbiota in mice with T2D and another preliminary clinical study didn't observe a modification in the fecal microbiome after dapagliflozin initiation.But in other study, empagliflozin significantly reshaped the gut microbiota after 1 month of treatment in T2D patients and be associated with shifts in plasma metabolites. Similarly, canagliflozin reduces plasma uremic toxins in a CKD mice model.However, it remains unknown whether treatment with dapagliflozin alters the gut microbiota in CKD patients without T2D; furthermore, the relationship between the gut microbiota, uremic toxins production and CKD-related beneficial effects of dapagliflozin remains elusive. Herein, the investigator will investigate the clinical benefits of dapagliflozin and possible associations between its renal function benefits and alterations in plasmatic gut microbiota-derived metabolites and the gut microbiota composition in non-T2D CKD patients. To this end, the investigator will conduct an observational clinical trial in non-T2D CKD patients with the primary aim of investigating dapagliflozin-induced compositional changes of intestinal gut microbiota.
Study Type
INTERVENTIONAL
Allocation
NA
Purpose
DIAGNOSTIC
Masking
NONE
Enrollment
50
Analysis of microbiota
Nephrology department, Hôpital Lyon Sud, Hospices Civils de Lyon
Lyon, France
RECRUITINGAlpha diversity and beta diversity size of the intestinal microbiota after 12 weeks of daily treatment with dapagliflozin compared to alfa and beta diversity size before initiation of treatment.
The analysis of the microbiota by 16s sequencing of bacterial DNA will be carried out on the GenEPII platform located at the Croix Rousse hospital, Hospices Civils de Lyon (Pr Sophie JARRAUD).
Time frame: Before and 12 weeks after initiation of treatment with dapagliflozin
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.