Interstitial lung diseases (ILD) are a complex group of diseases that cause significant morbidity and mortality, develop diffuse lung parenchyma and alveolar inflammation, as well as interstitial fibrosis, which refers to more than 200 diseases. Due to restrictive type ventilation disorder and impaired pulmonary gas exchange, pulmonary function has deteriorated in these patients and progressive shortness of breath, fatigue, cough and exercise intolerance are usually observed, which also affects the quality of life.
As a result of the chronic inflammatory process of the disease, structural and mechanical pulmonary disorders develop, which are cited as the causes of deterioration in cardiopulmonary functions. In these patients, there is a decrease in static and dynamic lung volumes and carbon monoxide diffusion capacity. As a result of this mechanism, the level of physical activity decreases due to increased shortness of breath during activity. In ILD, there is a decrease in peripheral November muscle strength of both the upper extremities and lower extremities. November it was stated that the weakness of the skeletal muscles of the lower extremities was more pronounced than the skeletal muscles of the upper extremities due to disuse in these patients, and the muscle strength of the upper extremities did not decrease significantly. However, it has been reported that upper limb exercise capacity is worse than lower limb exercise capacity. Arterial hypoxemia is shown as the main reason for the decrease in exercise performance, and peak oxygen consumption (VO2peak) decreased in these patients. In healthy people, respiratory frequency, tidal volume (VT), minute ventilation and oxygen consumption increase during exercise. In interstitial lung patients, vital capacity decreases at rest, which leads to limitation of VT. Lung compliance decreases and respiratory workload increases. The respiratory workload, which increases even more during exercise, has a bad effect on ventricular function. This causes a lower oxygen pulse and pulse volume in patients during exercise than in healthy individuals. The primary aim of the study: To compare the maximal exercise capacities and muscle oxygenation during cardiopulmonary exercise tests of upper and lower extremities in patients with interstitial lung disease. The secondary aim of the study is to compare energy consumption and the perception of dyspnea and fatigue during tests in patients with interstitial lung disease. The primary outcome will be upper and lower maximal exercise capacities (cardiopulmonary exercise tests) and muscle oxygenation during cardiopulmonary exercise tests (Near-infrared spectroscopy) device). Secondary outcome will be energy consumption (multi sensor activity device), the perception of dyspnea (Modified Borg Scale (MBS)) and fatigue (MBS).
Gazi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Cardiopulmonary Rehabilitation Unit
Ankara, Çankaya, Turkey (Türkiye)
RECRUITINGPeripheral Muscle Oxygenation
Peripheral muscle oxygen will be measured by near-infrared spectrometry. The device probes will be placed on the upper and lower extremities for both tests. The device allows to display of the percentage of oxygen, the concentration of oxyhemoglobin, and deoxyhemoglobin, the difference between oxyhemoglobin and deoxyhemoglobin, and the total hemoglobin. These parameters will be evaluated in our study.
Time frame: through study completion, an average of 1 year
Maximal Exercise Capacity
Maximal Exercise capacity will be evaluated with Cardiopulmonary Exercise testing. The Cardiopulmonary Exercise Testing will be applied according to American Thoracic Society (ATS) and European Respiratory Society (ERS) criteria.
Time frame: through study completion, an average of 1 year
Energy Consumption During Tests
Energy consumption will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient wear the multi sensor physical activity monitor over the triceps muscle of the non-dominant arm during CPETs. Energy consumption (joule / day) will be measured with the multi-sensor physical activity monitor. The measured parameter will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical Activity Level (Total energy expenditure)
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Total energy expenditure (joule / day) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.
Study Type
OBSERVATIONAL
Enrollment
30
Physical activity (Active energy expenditure (joule / day))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Active energy expenditure (joule / day) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical activity (Physical activity time (min / day))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Physical activity time (min / day)will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical activity (Average metabolic equivalent (MET / day))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Average metabolic equivalent (MET / day) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical activity (Number of steps (steps / day))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Number of steps (steps / day) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical activity (Time spent lying down (min / day) days))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Time spent lying down (min / day) days) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Physical activity (Sleep time (min / day))
Physical activity will be evaluated with the Multi sensor activity monitor (SenseWear®, Inc Pittsburgh, ABD). The patient will wear the multisensor physical activity monitor over the triceps muscle of the non-dominant arm for 4 continuous days. The patient will be informed about removing the device while taking a bath. Sleep time (min / day) will be measured with the multi-sensor physical activity monitor. The parameters measured over two days will be averaged and analyzed with the "SenseWear® 7.0 Software" program.
Time frame: through study completion, an average of 1 year
Peripheral Muscle Strength
Isometric peripheral muscle strength will be measured with a portable hand dynamometer (JTECH Commander, USA). Measurements will be repeated on the shoulder abductors and knee extensors three times on the right and left.
Time frame: through study completion, an average of 1 year
Dyspnea
Modified Borg Scale: The Modified Borg scale is a subjective scale that scores 0-10 for breathlessness and fatigue at rest and/or during activity. The lowest 0 points "not at all" the highest 10 points "very severe" means shortness of breath.
Time frame: through study completion, an average of 1 year
Fatigue
Fatigue will be measured by the Turkish adaptation of the Fatigue Severity Scale. The Fatigue Severity Scale (FSS) is a scale that evaluates fatigue and consists of 9 questions. Scores can be taken from the scale in the range of 0 to 63 points. Each item is scored between 0 and 7 points. The total score is divided by 9 and if the average is less than 4, there is no fatigue, and if more than 4 points, it is considered that there is fatigue.
Time frame: through study completion, an average of 1 year