To investigate patients suffering from iHF and a LVEF of equal or less than 40% despite best medical treatment safety and efficacy of a single retrograde intra-cardiac venous (i.cv.) injection of UA-ADRCs isolated from lipoaspirate at the point of care, using the Transpose® RT / Matrase System (InGeneron, Houston, TX, USA) through an over-the- wire, small balloon catheter, advanced through the coronary si-nus and located within a coronary vein at the site of inter-est, versus patients on best medical treatment.
The aim of the study is to investigate patients suffering from chronic congestive heart failure (iHF) and a left ventricular ejection fraction (LVEF) of equal or less than 40% despite best medical treatment safety and efficacy of a single retrograde intra-cardiac venous (i.cv.) injection of uncultured, autologous, adipose-derived regenerative cells (UA-ADRCs) isolated from lipoaspirate at the point of care. The cells will be isolated using the Transpose® RT / Matrase System (InGeneron, Houston, TX, USA) through an over-the-wire, small balloon catheter, advanced through the coronary sinus and located within a coronary vein at the site of interest, versus patients on best medical treatment. This study hypothesizes that treatment of iHF with a balloon-enhanced i.cv. injection of UA-ADRCs isolated from lipoaspirate at the point of care using the Transpose RT / Matrase system (InGeneron) is safe and effective and is more effective than best medical treatment. The primary objective of this study is to evaluate safety and efficacy of treating iHF with a single, balloon-enhanced retrograde i.cv. injection of UA-ADRCs. Efficacy will be demonstrated in a superiority study design by comparing improvement in global cardiac functional parameters demonstrated using cardiac magnetic resonance imaging (cMRI) or Cardiac CT, and by clinical endpoints after a single i.cv. injection of UA-ADRCs, to best medical treatment. Safety will be demonstrated by reporting major ad-verse cardiac events (MACE) and other adverse events. A total of n=36 patients with iHF and a reduced LVEF (at ≤40%) will be randomly assigned to i.cv. injection of either UA-ADRCs (UA-ADRCs Group; n=24) or best medical treatment (Control Group; n=12). The enrollment will take place up to four study sites, among them the National Science Research Center of the Principal Investigator (Dr. Abay Baigenzhin) in Astana (Kazakhstan), will enroll 36 patients in the study. The study duration is the time to enroll patients in the study and will take 6 months. Individual follow-up time after the treatment is 6 months. Follow-up schedule is as follows. Follow-up visits will take place at 1, 3, and 6 months post- treatment. Follow-up visit will include an assessment by cMRI, or cCT, physical examinations including echocardiography, patient-reported outcome questionnaires, control of medication usage, number of hospitalizations for cardiac conditions, and adverse event monitoring (including MACE). Those patients in the control group that have finished the 1, 3, and 6 month follow up visits will be offered to be treated with stem cell therapy as well. All remaining patients in both groups will be offered to participate in a subsequent registry study for 12 and 24-month follow-up vis-its, that could include physical examinations, patient-reported outcome questionnaires, medication usage, number of hospitalizations for cardiac conditions, and adverse event monitoring (including MACE) and cMRI or cCT. These long-term data would be compared to the corresponding baseline data. The Primary Endpoint is to be cardiac function represented by left ventricular ejection fraction (LVEF) at 6 months assessed by cardiac MRI (cMRI) or cCT. Treatment success is defined as a 15% relative increase of LVEF from baseline to 6-month follow-up. Treatment success is expected in 65% of patients in the treatment group vs 10% in the control group. Secondary Endpoints will be assessed at baseline and at 6 months post-treatment and will include: 1. n-terminal pro-b-type natriuretic peptide (NT-proBNP), 2. 6-min walk test, 3. the Minnesota Living with Heart Failure Ques-tionnaire (MLHFQ) score, 4. need for hospitalization due to cardiac conditions, cardiac related death, 5. incidence of treatment-related adverse events (in-cluding MACE), 6. Only in patients with cMRI: relative amount of left ven-tricular scar tissue, left ventricular bull's eye segmental contracting areas. This is a prospective, randomized, controlled, multicenter, safety and efficacy study in patients with iHF comparing best available medical treatment plus a balloon-enhanced single i.cv. injection of UA-ADRCs isolated from lipoaspirate at point of care using the Transpose RT / Matrase system (InGeneron) in 24 patients, to best available medical treatment in 12 patients in the control group. Background Heart failure and myocardial infarction (MI) are consequences of ischemic heart disease (IHD) \[1\]. In recent years cell-based therapies have emerged as a promising strategy to re-generate ischemic myocardium \[2-4\]. However, the generally disappointing outcome of related clinical trials established a need for developing novel, more effective cell-based therapies for MI. In this regard, it is of note that the treatment of chronic MI (i.e., patients with a previous MI) (CMI) requires a different approach than the treatment of acute MI (AMI). The amount of pluripotent stem cells has been reported to be significantly higher in adipose tissue than in bone marrow (5% to 10% vs. 0.1%) \[12\]. Fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) have the advantage over culture-expanded adipose-derived stem cells (ASCs) that UA-ADRCs allow for immediate usage at the point of care, combined with low safety concerns, since no culturing or modification is applied. Several experimental studies in animal models have demonstrated the potential of UA-ADRCs for treating AMI \[13-15\], and a first clinical trial (APOLLO) showed promising preliminary results \[16\]. The investigators recently published results of a preclinical porcine study regarding the treatment of chronic ischemic heart failure (\> 4 wk post-MI) with UA-ADRCs \[28\]. This study demonstrated that retrograde delivery of UA-ADRCs in a porcine model of chronic ischemic heart failure significantly improved myocardial function, increased myocardial mass, and reduced scar tissue formation. As part of this study, an evidence-based systematic review of the literature according to the PRISMA guidelines was conducted to examine preclinical studies on the treatment of iHF with stem cells \[28\]. Preliminary results from a study including 28 patients with chronic ischemic cardiomyopathy In one study evaluating the safety and preliminary efficacy of stromal vascular fraction ad-ministration (by a needle catheter into the myocardium) including 28 patients with chronic ischemic cardiomyopathy, the authors reported results from the six-minute walk test and LVEF at baseline and three and six months (with additional testing at 12 months if applicable) after treatment. LVEF increased from baseline to three and six months of follow-up. Results from a six-minute walk test showed a performance increase of about 80m from baseline to three, six, and twelve months of follow-up \[18\]. Results of our initial open-label Pilot Study in patients with inclusion and exclusion criteria comparable to the now designed randomized prospective study The pilot phase study for this randomized study was conducted in collaboration with the National Scientific Medical Center, Astana, Kazakhstan. Six patients were enrolled (five male, one female, NYHA class III, age 61.3±6.2 years) with the diagnosis of chronic ischemic heart failure and no improvement of symptoms or function after standard therapy for at least one month. All patients had documented coronary artery disease with evidence of myocardial injury and left ventricular dysfunction. Five out of six participants presented LVEF of ≤40%. All patients underwent liposuction under conscious sedation and local anesthesia. Lipoaspirate was processed according to the established InGeneron procedure to produce a cellular suspension of stromal vascular fraction including UA-ADRCs using the Transpose® RT / Matrase System (InGeneron, Houston, TX, USA). This cellular preparation was retrogradely injected via the coronary sinus into the corresponding coronary vein. The main outcome of interest was the change of LVEF (assessed by cMRI) from baseline to 3-6 months. In five of the six patients, an improvement in LVEF was observed. Further, adverse events reported were related to mild bruising/swelling/redness at the site of the liposuction in the abdominal area. There were no hospitalizations or health decline due to HF symptoms throughout the initial follow-up phase. Rationale and Outcomes for Using UA-ADRCs UA-ADRCs have several advantages over other types of cells used in and/or under investigation for regenerative cell therapy: * UA-ADRCs do not share ethical concerns nor the risk of teratoma formation as reported for embryonic stem cells \[19-21\]. * Neither UA-ADRCs share the risk of tumorigenesis \[22-24\]. * Because UA-ADRCs are autologous cells which does not bear the risk of HLA mismatch \[25-27\]. * Adipose tissue is relatively easy to be harvested in most patients through liposuction. Furthermore, uncultured vascular-associated MSCs can represent up to 12% of the total population of SVF cells \[28\], whereas only 0.001%-0.1% of the total population of bone marrow nucleated cells are considered true stem cells \[31, 32\]. * Harvesting adipose tissue by liposuction is typically less invasive than harvesting bone marrow \[31, 33, 34\] with mini liposuction required. * The use of fresh UA-ADRCs allows immediate usage at point of care \[14, 41-43\]. * When using UA-ADRCs during the same surgical procedure in an autologous and homologous way, they have not been considered as advanced therapy medicinal product (ATMP) by the European Medicines Agency \[40\]. * Recent studies indicated non-inferiority or even superiority of UA-ADRCs over ASCs in, for example, rescuing heart function after acute myocardial infarction \[48\], bone regeneration \[50\], and tendon regeneration \[51\] (see also \[4\]). An optimal system for providing UA-ADRCs at the point of care should be capable of isolating the highest possible number of living ADRCs from the lowest possible amount of adipose tissue, in the shortest possible time, and providing the cells at the highest possible concentration in a final cell suspension. In this regard, it has been demonstrated in the literature that the Transpose RT / Matrase sys-tem (InGeneron, Houston, TX, USA) is the most efficient method with respect to the viable cell yield (i.e., the number of living cells / mL lipoaspirate). Specifically, the investigators hypothesize that (i) a single i.cv injection of UA-ADRCs isolated with the Transpose RT / Matrase system (InGeneron) is safe and effective in the treatment of iHF, (ii) this therapy is statistically significantly more effective than just guideline based drug treatment, and (iii) i.cv injection of UA-ADRCs will possibly gain widespread acceptance, if safety and higher effectiveness than standard maximum drug therapy will be demonstrated by this and following multicenter randomized controlled trials.
Study Type
INTERVENTIONAL
Allocation
RANDOMIZED
Purpose
TREATMENT
Masking
SINGLE
Enrollment
36
Intracardial venous injection of fresh, uncultured, autologous, adipose-derived regenerative cells isolated from lipoaspirate at the point of care.
Patients will receive continuation of their best guideline based medical treatment.
National Scientific Medical Center
Astana, Kazakhstan
RECRUITINGLeft ventricular ejection fraction at 6 months assessed by cardiac MRI or cCT
Change / Increase in cardiac function (LVEF from baseline to 6 month follow-up). Treatment success is defined as ≥15% increase in LVEF assessed by cMRI or cCT if cMRI is not feasible.
Time frame: Baseline and at 6 month post-treatment
n-terminal pro-b-type natriuretic peptide
Assessment of n-terminal pro-b-type natriuretic peptide in the blood samples of the patients.
Time frame: Baseline and at 6 month post-treatment
6-min walk test
A validated, sub-maximal exercise test used to assess aerobic capacity and endurance. The distance covered over a time of 6 minutes is used as the outcome by which to compare changes in performance capacity.
Time frame: Baseline and at 6 month post-treatment
Scar tissue assessment only in patients with cMRI
Only in patients with cMRI: relative amount of left ventricular scar tissue, left ventricular bull's eye segmental contracting areas.
Time frame: Baseline and at 6 month post-treatment
The Minnesota Living with Heart Failure Questionnaire (MLHFQ) score
The Minnesota Living with Heart Failure Questionnaire (MLHFQ) Total score could range from 0 to 105, with higher scores indicating more significant impairment in health-related quality of lifescore will be applied to the patients.
Time frame: Baseline and at 6 month post-treatment
New York Heart Association (NYHA) class
Assessment of cardiac function according to New York Heart Association (NYHA) class.
Time frame: Baseline and at 6 month post-treatment
Incidence of treatment-related adverse events (including MACE)
Consists of the reported composite of total death; MI; stroke, hospitalization because of HF; and revascularization, including percutaneous coronary intervention, and coronary artery bypass graft.
Time frame: Baseline and at 6 month post-treatment
This platform is for informational purposes only and does not constitute medical advice. Always consult a qualified healthcare professional.